コード例 #1
0
ファイル: ECGFeatures.py プロジェクト: gitarja/ValenceArousal
    def extractTimeDomain(self, x):
        try:
            nni = self.extractRR(x)
            nniParams = td.nni_parameters(nni=nni)
            nniSD = td.sdnn(nni=nni)
            nniDiff = td.nni_differences_parameters(nni=nni)
            nniDiffRM = td.rmssd(nni=nni)
            nniDiffSD = td.sdsd(nni=nni)
            hrParams = td.hr_parameters(nni=nni)
            return np.array([nniParams["nni_mean"], nniParams["nni_counter"], nniSD["sdnn"],
                   nniDiff["nni_diff_mean"], nniDiffRM["rmssd"], nniDiffSD["sdsd"],
                   hrParams["hr_mean"], hrParams["hr_std"]])

        except:
            return np.array([])
コード例 #2
0
ファイル: pybvp.py プロジェクト: mikelval82/GePHYCAM
def compute_features(nni):
    features = {}
    features['mean_hr'] = tools.heart_rate(nni).mean()
    features['sdnn'] = td.sdnn(nni)[0]
    features['rmssd'] = td.rmssd(nni)[0]
    features['sdsd'] = td.sdsd(nni)[0]
    features['nn20'] = td.nn20(nni)[0]
    features['pnn20'] = td.nn20(nni)[1]
    features['nn50'] = td.nn50(nni)[0]
    features['pnn50'] = td.nn50(nni)[1]
    features['hf_lf_ratio'] = fd.welch_psd(nni, show=False)['fft_ratio']
    features['very_lf'] = fd.welch_psd(nni, show=False)['fft_peak'][0]
    features['lf'] = fd.welch_psd(nni, show=False)['fft_peak'][1]
    features['hf'] = fd.welch_psd(nni, show=False)['fft_peak'][2]
    features['log_very_lf'] = fd.welch_psd(nni, show=False)['fft_log'][0]
    features['log_lf'] = fd.welch_psd(nni, show=False)['fft_log'][1]
    features['log_hf'] = fd.welch_psd(nni, show=False)['fft_log'][2]
    features['sampen'] = nl.sample_entropy(nni)[0]

    return features
コード例 #3
0
def cal_hrv(data_list):

    if (np.nan in data_list) or (len(data_list) <= 1):
        sdsd = np.nan
        rmssd = np.nan
        sd1 = np.nan
        sd2 = np.nan
        sd_ratio = np.nan
        a1 = np.nan
        a2 = np.nan
        a_ratio = np.nan
        sampen = np.nan

    else:
        # sdsd
        sdsd = round(td.sdsd(nni=data_list)['sdsd'], 5)
        # rmssd
        rmssd = round(td.rmssd(nni=data_list)['rmssd'], 5)
        # sd1, sd2
        nl_results = nl.poincare(nni=data_list)
        sd1 = round(nl_results['sd1'], 5)
        sd2 = round(nl_results['sd2'], 5)
        sd_ratio = round(sd2 / sd1, 5)
        # dfa a1, a2
        dfa_results = nl.dfa(data_list)
        try:
            a1 = round(dfa_results['dfa_alpha1'], 5)
            a2 = round(dfa_results['dfa_alpha2'], 5)
            a_ratio = round(a2 / a1, 5)
        except:
            a1 = np.nan
            print(a1, type(a1))
            a2 = np.nan
            print(a2, type(a2))
            a_ratio = np.nan
        # Sampen
        t = np.std(data_list)
        sampen = round(
            nl.sample_entropy(nni=data_list, tolerance=t)['sampen'], 6)

    return sdsd, rmssd, sd1, sd2, sd_ratio, a1, a2, a_ratio, sampen
コード例 #4
0
ファイル: ECGFeatures.py プロジェクト: gitarja/ValenceArousal
    def extractTimeDomain(self, x):
        try:
            nni = self.extractRR(x)
            nniParams = td.nni_parameters(nni=nni)
            nniSD = td.sdnn(nni=nni)
            nniDiff = td.nni_differences_parameters(nni=nni)
            nniDiffRM = td.rmssd(nni=nni)
            nniDiffSD = td.sdsd(nni=nni)
            hrParams = td.hr_parameters(nni=nni)
            nn20 = td.nn20(nni=nni)
            nn30 = td.nnXX(nni=nni, threshold=30)
            nn50 = td.nn50(nni=nni)
            # return np.array([nniParams["nni_mean"], nniParams["nni_counter"], nniSD["sdnn"],
            #        nniDiff["nni_diff_mean"], nniDiffRM["rmssd"], nniDiffSD["sdsd"],
            #        hrParams["hr_mean"], hrParams["hr_std"]])

            return np.array([nniParams["nni_mean"], nniParams["nni_counter"], nniSD["sdnn"],
                             nniDiff["nni_diff_mean"], nniDiffRM["rmssd"], nniDiffSD["sdsd"],
                             hrParams["hr_mean"], hrParams["hr_std"], hrParams["hr_max"] - hrParams["hr_min"],
                             nn20["nn20"], nn20["pnn20"], nn30["nn30"], nn30["pnn30"], nn50["nn50"], nn50["pnn50"]])

        except:
            return np.array([])
コード例 #5
0
ファイル: time_domain.py プロジェクト: semenovDA/VSRstats
    def _computeSignal(self, signal):
        obj = {}

        # Best min_dist & thres for sphygmogram signal
        peaks = peak.indexes(signal, min_dist=56, thres=0.16)

        # Ignore un normal signls (with no peaks)
        if (len(peaks) == 0): return obj

        nn = tools.nn_intervals(peaks)

        # Ignore un normal signls (with no NN)
        if (len(nn) == 0): return

        # Standard
        obj = dict(td.nni_parameters(nn, peaks), **obj)
        obj = dict(td.nni_differences_parameters(nn, peaks), **obj)
        obj = dict(td.sdnn(nn, peaks), **obj)
        obj = dict(td.sdnn_index(nn, peaks), **obj)
        obj = dict(td.sdann(nn, peaks), **obj)
        obj = dict(td.rmssd(nn, peaks), **obj)
        obj = dict(td.sdsd(nn, peaks), **obj)
        obj = dict(td.nn50(nn, peaks), **obj)
        obj = dict(td.nn20(nn, peaks), **obj)
        obj = dict(td.geometrical_parameters(nn, peaks, plot=False), **obj)
        del obj['nni_histogram']

        # Additional
        obj = dict({'cv': self._cv(obj['sdnn'], obj['nni_mean'])}, **obj)

        peaks_diff = tools.nni_diff(peaks)
        obj = dict({'MxDMn': max(peaks_diff) - min(peaks_diff)}, **obj)
        obj = dict({'MxRMn': max(peaks_diff) / min(peaks_diff)}, **obj)
        obj = dict({'Mo': stats.mode(peaks_diff)[0][0]}, **obj)

        counter = Counter(peaks_diff)
        idx = list(counter.keys()).index(obj["Mo"])
        obj = dict({'AMo': list(counter.values())[idx]}, **obj)
        obj = dict({'SI': obj['AMo'] / (2 * obj['Mo'] * obj['MxDMn'])}, **obj)

        # Autocorrelation function

        # Frequency stats
        welch = frequency_domain(signal).stats['welch']['params']
        bands = list(welch['fft_bands'].keys())

        obj = dict({'TP': welch['fft_total']}, **obj)

        obj = dict({'HF': welch['fft_rel'][bands.index('hf')]}, **obj)
        obj = dict({'LF': welch['fft_rel'][bands.index('lf')]}, **obj)
        obj = dict({'VLF': welch['fft_rel'][bands.index('vlf')]}, **obj)
        obj = dict({'ULF': welch['fft_rel'][bands.index('ulf')]}, **obj)

        obj = dict({'HFav': welch['fft_abs'][bands.index('hf')]}, **obj)
        obj = dict({'LFav': welch['fft_abs'][bands.index('lf')]}, **obj)
        obj = dict({'VLFav': welch['fft_abs'][bands.index('vlf')]}, **obj)
        obj = dict({'ULFav': welch['fft_abs'][bands.index('ulf')]}, **obj)

        obj = dict({'(LF/HF)av': obj['LFav'] / obj['HFav']}, **obj)
        obj = dict({'IC': obj['LF'] / obj['VLF']}, **obj)

        for k in obj:
            if (math.isnan(obj[k])):
                obj[k] = 0

        return obj