コード例 #1
0
ファイル: test01.py プロジェクト: MachineAi/PyHSPF
# get the datasets

wtemps = wdm.get_data('test.wdm', 134)
evaps = wdm.get_data('test.wdm', 41)
winds = wdm.get_data('test.wdm', 42)
flow1 = wdm.get_data('test.wdm', 113)
flow2 = wdm.get_data('test.wdm', 119)
dewp1 = wdm.get_data('test.wdm', 124)
dewp2 = wdm.get_data('test.wdm', 125)
dewp3 = wdm.get_data('test.wdm', 126)
sedm = wdm.get_data('test.wdm', 127)
flow3 = wdm.get_data('test.wdm', 136)

# start and end dates (these are all the same so I will only do this once)

start, end = wdm.get_dates('test.wdm', 134)

times = [start + i * (end - start) / len(wtemps) for i in range(len(wtemps))]

# use matplotlib to make the chart

from matplotlib import pyplot, dates

fig, subs = pyplot.subplots(nrows=3, ncols=2, sharex=True, figsize=(12, 9))

fig.suptitle('1976 Iowa River Water Quality Data', size=14)

subs[0, 0].plot_date(times, dewp1, 'r-')
subs[0, 0].plot_date(times, dewp2, 'g-')
subs[0, 0].plot_date(times, dewp3, 'b-')
subs[0, 0].set_ylabel('Dew point\n(\u00B0F)', multialignment='center')
コード例 #2
0
ファイル: intro02.py プロジェクト: djibi2/PyHSPF
# find all the time series types 
# (this is how they are identified in the exp file)

tstypes = [wdm.get_attribute(f, n, 'TSTYPE') for n in dsns]

# find the precip and evap timeseries (we could also just look at the exp files
# to figure this out, but this illustrates some of the flexibility of PyHSPF)

precip_dsn = dsns[tstypes.index('HPCP')]
evap_dsn   = dsns[tstypes.index('EVAP')]

# get the time series and start and end dates

precip = wdm.get_data(f, precip_dsn)

start, end = wdm.get_dates(f, precip_dsn)

evap = wdm.get_data(f, evap_dsn, start = start, end = end)

# the observed flow is dsn 281

oflow = wdm.get_data(f, 281, start = start, end = end)

# close up the wdm file (forgetting this WILL cause trouble)

wdm.close('hunting.wdm')

# make a list of the times in the daily time series using datetime "timedelta"

delta = datetime.timedelta(days = 1)
times = [start + i * delta for i in range(len(precip))]
コード例 #3
0
# start date for the BASINS data (after the warmup period)

bstart = start + datetime.timedelta(days=warmup)

# get the precipitation data

i = tstypes.index('PREC')

prec = wdm.get_data(f2, dsns[i], start=bstart, end=end)

# get the potential evapotranspiration and other climate data

dsns = wdm.get_datasets(f1)
tstypes = [wdm.get_attribute(f1, n, 'TSTYPE') for n in dsns]
dates = [wdm.get_dates(f1, n) for n in dsns]
tssteps = [wdm.get_attribute(f1, n, 'TSSTEP') for n in dsns]
tcodes = [wdm.get_attribute(f1, n, 'TCODE ') for n in dsns]

print(('Time series available in WDM file {}:\n'.format(f1)))
for n, t, d, tstep, tcode in zip(dsns, tstypes, dates, tssteps, tcodes):
    s, e = d
    print(('{:02d}'.format(n), t, s))

# get the PyHSPF evapotranspiration data

i = tstypes.index('PEVT')
evap = wdm.get_data(f1, dsns[i], start=bstart, end=end)

# get the PyHSPF wind speed data
コード例 #4
0
ファイル: test01.py プロジェクト: djibi2/PyHSPF
# get the datasets

wtemps = wdm.get_data('test.wdm', 134)
evaps  = wdm.get_data('test.wdm', 41)
winds  = wdm.get_data('test.wdm', 42)
flow1  = wdm.get_data('test.wdm', 113)
flow2  = wdm.get_data('test.wdm', 119)
dewp1  = wdm.get_data('test.wdm', 124)
dewp2  = wdm.get_data('test.wdm', 125)
dewp3  = wdm.get_data('test.wdm', 126)
sedm   = wdm.get_data('test.wdm', 127)
flow3  = wdm.get_data('test.wdm', 136)

# start and end dates (these are all the same so I will only do this once)

start, end = wdm.get_dates('test.wdm', 134)

times = [start + i * (end - start) / len(wtemps) for i in range(len(wtemps))]

# use matplotlib to make the chart

from matplotlib import pyplot, dates

fig, subs = pyplot.subplots(nrows = 3, ncols = 2, sharex = True,
                            figsize = (12,9))

fig.suptitle('1976 Iowa River Water Quality Data', size = 14)

subs[0,0].plot_date(times, dewp1, 'r-')
subs[0,0].plot_date(times, dewp2, 'g-')
subs[0,0].plot_date(times, dewp3, 'b-')
コード例 #5
0
ファイル: hspexp.py プロジェクト: Python3pkg/PyHSPF
    dsns = wdm.get_datasets(wdmfile)

    # see the datasets in the WDM file

    #for n in dsns: print(n, wdm.get_attribute(wdmfile, n, 'TSTYPE'))

    # look at the UCI file to get more info on the datasets

    precip = wdm.get_data(wdmfile, 106)
    evap = wdm.get_data(wdmfile, 426)
    pet = wdm.get_data(wdmfile, 425)
    rovol = wdm.get_data(wdmfile, 420)  # acre-ft
    oflow = wdm.get_data(wdmfile, 281)  # cfs

    start, end = wdm.get_dates(wdmfile, 420)

    # calculate the watershed area from the SCHEMATIC block in the UCI file

    area = (32 + 6 + 1318 + 193 + 231 + 84 + 3078 + 449 + 540 + 35)

    #print('watershed area: {} acres'.format(area))

    # convert ROVOL and observed flows to m3/s

    ft3m3 = 35.314

    # conversion from uci ext targets

    c = 0.0020107
コード例 #6
0
flwData = pd.read_csv(
    os.path.abspath(os.path.curdir) + '\\siletz_HSPF_flw.csv')

ts_to_wdmFile(wdmFile=wdmFile,
              pcpData=pcpData,
              petData=petData,
              flwData=flwData)

# See if you can read the data from the WDM file
wdm = WDMUtil(verbose=True, messagepath=mssgpath)

# ADD BASIN TIMESERIES FROM THE WDM TO HSPFMODEL
# open the wdm for read access
wdm.open(wdmFile, 'r')

start, end = wdm.get_dates(wdmFile, 101)

x = 1

# Add specific basin met data
for basin in range(0, len(basinRecords)):

    # The DSNs are known from the exp file so just use those this time
    prcp = wdm.get_data(wdmFile, 100 + x)

    evap = wdm.get_data(wdmFile, 200 + x)

    # Add and assign timeseries data
    hspfmodel.add_timeseries('precipitation', ('prcp_' + str(x)),
                             start,
                             prcp,
コード例 #7
0
ファイル: intro03.py プロジェクト: waternk/PyHSPF
wdm.import_exp(hunthour, f)

# copy the data to the hspfmodel using WDMUtil

# open the wdm for read access

wdm.open(f, 'r')

# the dsns are known from the exp file so just use those this time

precip = wdm.get_data(f, 106)
evap = wdm.get_data(f, 111)
oflow = wdm.get_data(f, 281)

start, end = wdm.get_dates(f, 106)

# close up the wdm file (forgetting this WILL cause trouble)

wdm.close('hunting.wdm')

# the evaporation data is daily so it needs to be disaggregated to hourly for
# an hourly simulation (see how easy this is with Python)
# the time series in the WDM file starts at 1 am so had to add one extra
# value to the beginning of the time series for consistency

evap = [0] + [e / 24 for e in evap for i in range(24)]
precip = [0] + [p for p in precip]
oflow = [0] + [o for o in oflow]

# list of times
コード例 #8
0
ファイル: hspexp.py プロジェクト: djibi2/PyHSPF
    dsns = wdm.get_datasets(wdmfile)

    # see the datasets in the WDM file

    #for n in dsns: print(n, wdm.get_attribute(wdmfile, n, 'TSTYPE'))

    # look at the UCI file to get more info on the datasets

    precip = wdm.get_data(wdmfile, 106)
    evap   = wdm.get_data(wdmfile, 426)
    pet    = wdm.get_data(wdmfile, 425)
    rovol  = wdm.get_data(wdmfile, 420) # acre-ft
    oflow  = wdm.get_data(wdmfile, 281) # cfs

    start, end = wdm.get_dates(wdmfile, 420)

    # calculate the watershed area from the SCHEMATIC block in the UCI file

    area = (32   + 
            6    + 
            1318 + 
            193  + 
            231  + 
            84   +
            3078 + 
            449  + 
            540  + 
            35   
            )
コード例 #9
0
ファイル: intro02.py プロジェクト: waternk/PyHSPF
# find all the time series types
# (this is how they are identified in the exp file)

tstypes = [wdm.get_attribute(f, n, 'TSTYPE') for n in dsns]

# find the precip and evap timeseries (we could also just look at the exp files
# to figure this out, but this illustrates some of the flexibility of PyHSPF)

precip_dsn = dsns[tstypes.index('HPCP')]
evap_dsn = dsns[tstypes.index('EVAP')]

# get the time series and start and end dates

precip = wdm.get_data(f, precip_dsn)

start, end = wdm.get_dates(f, precip_dsn)

evap = wdm.get_data(f, evap_dsn, start=start, end=end)

# the observed flow is dsn 281

oflow = wdm.get_data(f, 281, start=start, end=end)

# close up the wdm file (forgetting this WILL cause trouble)

wdm.close('hunting.wdm')

# make a list of the times in the daily time series using datetime "timedelta"

delta = datetime.timedelta(days=1)
times = [start + i * delta for i in range(len(precip))]
コード例 #10
0
# start date for the BASINS data (after the warmup period)

bstart = start + datetime.timedelta(days = warmup)

# get the precipitation data

i = tstypes.index('PREC')

prec = wdm.get_data(f2, dsns[i], start = bstart, end = end)

# get the potential evapotranspiration and other climate data

dsns    = wdm.get_datasets(f1)
tstypes = [wdm.get_attribute(f1, n, 'TSTYPE') for n in dsns]
dates   = [wdm.get_dates(f1, n)               for n in dsns]
tssteps = [wdm.get_attribute(f1, n, 'TSSTEP') for n in dsns]
tcodes  = [wdm.get_attribute(f1, n, 'TCODE ') for n in dsns]

print('Time series available in WDM file {}:\n'.format(f1))
for n, t, d, tstep, tcode in zip(dsns, tstypes, dates, tssteps, tcodes): 
    s, e = d
    print('{:02d}'.format(n), t, s)

# get the PyHSPF evapotranspiration data

i = tstypes.index('PEVT')
evap = wdm.get_data(f1, dsns[i], start = bstart, end = end)

# get the PyHSPF wind speed data
コード例 #11
0
ファイル: intro03.py プロジェクト: djibi2/PyHSPF
wdm.import_exp(hunthour, f)

# copy the data to the hspfmodel using WDMUtil

# open the wdm for read access

wdm.open(f, 'r')

# the dsns are known from the exp file so just use those this time

precip = wdm.get_data(f, 106)
evap   = wdm.get_data(f, 111)
oflow  = wdm.get_data(f, 281)

start, end = wdm.get_dates(f, 106)

# close up the wdm file (forgetting this WILL cause trouble)

wdm.close('hunting.wdm')

# the evaporation data is daily so it needs to be disaggregated to hourly for
# an hourly simulation (see how easy this is with Python)
# the time series in the WDM file starts at 1 am so had to add one extra 
# value to the beginning of the time series for consistency

evap   = [0] + [e / 24 for e in evap for i in range(24)]
precip = [0] + [p for p in precip]
oflow  = [0] + [o for o in oflow]

# list of times