コード例 #1
0
    def construct_matrices(self):
        """
        Construct FEM matrices
        """
        V = p2e(self.vertices)
        F = p2e(self.faces)
        # Compute gradient operator: #F*3 by #V
        G = igl.eigen.SparseMatrixd()
        L = igl.eigen.SparseMatrixd()
        M = igl.eigen.SparseMatrixd()
        N = igl.eigen.MatrixXd()
        A = igl.eigen.MatrixXd()
        igl.grad(V, F, G)
        igl.cotmatrix(V, F, L)
        igl.per_face_normals(V, F, N)
        igl.doublearea(V, F, A)
        igl.massmatrix(V, F, igl.MASSMATRIX_TYPE_VORONOI, M)
        G = e2p(G)
        L = e2p(L)
        N = e2p(N)
        A = e2p(A)
        M = e2p(M)
        M = M.data
        # Compute latitude and longitude directional vector fields
        NS = np.reshape(G.dot(self.lat), [self.nf, 3], order='F')
        EW = np.cross(NS, N)
        # Compute F2V matrix (weigh by area)
        # adjacency
        i = self.faces.ravel()
        j = np.arange(self.nf).repeat(3)
        one = np.ones(self.nf * 3)
        adj = sparse.csc_matrix((one, (i, j)), shape=(self.nv, self.nf))
        tot_area = adj.dot(A)
        norm_area = A.ravel().repeat(3) / np.squeeze(tot_area[i])
        F2V = sparse.csc_matrix((norm_area, (i, j)), shape=(self.nv, self.nf))
        # Compute interpolation matrix
        if self.level > 0:
            intp = self.intp[self.nv_prev:]
            i = np.concatenate(
                (np.arange(self.nv), np.arange(self.nv_prev, self.nv)))
            j = np.concatenate((np.arange(self.nv_prev), intp[:, 0], intp[:,
                                                                          1]))
            ratio = np.concatenate(
                (np.ones(self.nv_prev), 0.5 * np.ones(2 * intp.shape[0])))
            intp = sparse.csc_matrix((ratio, (i, j)),
                                     shape=(self.nv, self.nv_prev))
        else:
            intp = sparse.csc_matrix(np.eye(self.nv))

        # Compute vertex mean matrix
        self.G = G  # gradient matrix
        self.L = L  # laplacian matrix
        self.N = N  # normal vectors (per-triangle)
        self.NS = NS  # north-south vectors (per-triangle)
        self.EW = EW  # east-west vectors (per-triangle)
        self.F2V = F2V  # map face quantities to vertices
        self.M = M  # mass matrix (area of voronoi cell around node. for integration)
        self.Seq = self._rotseq(self.vertices)
        self.Intp = intp
コード例 #2
0
ファイル: 204_Gradient.py プロジェクト: metorm/libigl

V = igl.eigen.MatrixXd()
F = igl.eigen.MatrixXi()

# Load a mesh in OFF format
igl.readOFF(TUTORIAL_SHARED_PATH + "cheburashka.off", V, F)

# Read scalar function values from a file, U: #V by 1
U = igl.eigen.MatrixXd()
igl.readDMAT(TUTORIAL_SHARED_PATH + "cheburashka-scalar.dmat", U)
U = U.col(0)

# Compute gradient operator: #F*3 by #V
G = igl.eigen.SparseMatrixd()
igl.grad(V, F, G)

# Compute gradient of U
GU = (G * U).MapMatrix(F.rows(), 3)

# Compute gradient magnitude
GU_mag = GU.rowwiseNorm()

viewer = igl.glfw.Viewer()
viewer.data().set_mesh(V, F)

# Compute pseudocolor for original function
C = igl.eigen.MatrixXd()

igl.jet(U, True, C)
コード例 #3
0
ファイル: 205_Laplacian.py プロジェクト: Emisage/libigl
L = igl.eigen.SparseMatrixd()
viewer = igl.viewer.Viewer()

# Load a mesh in OFF format
igl.readOFF("../../tutorial/shared/cow.off", V, F)

# Compute Laplace-Beltrami operator: #V by #V
igl.cotmatrix(V,F,L)

# Alternative construction of same Laplacian
G = igl.eigen.SparseMatrixd()
K = igl.eigen.SparseMatrixd()

# Gradient/Divergence
igl.grad(V,F,G);

# Diagonal per-triangle "mass matrix"
dblA = igl.eigen.MatrixXd()
igl.doublearea(V,F,dblA)

# Place areas along diagonal #dim times

T = (dblA.replicate(3,1)*0.5).asDiagonal() * 1

# Laplacian K built as discrete divergence of gradient or equivalently
# discrete Dirichelet energy Hessian

temp = -G.transpose()
K = -G.transpose() * T * G
print("|K-L|: ",(K-L).norm())
コード例 #4
0
L = igl.eigen.SparseMatrixd()
viewer = igl.viewer.Viewer()

# Load a mesh in OFF format
igl.readOFF("../../tutorial/shared/cow.off", V, F)

# Compute Laplace-Beltrami operator: #V by #V
igl.cotmatrix(V, F, L)

# Alternative construction of same Laplacian
G = igl.eigen.SparseMatrixd()
K = igl.eigen.SparseMatrixd()

# Gradient/Divergence
igl.grad(V, F, G)

# Diagonal per-triangle "mass matrix"
dblA = igl.eigen.MatrixXd()
igl.doublearea(V, F, dblA)

# Place areas along diagonal #dim times

T = (dblA.replicate(3, 1) * 0.5).asDiagonal() * 1

# Laplacian K built as discrete divergence of gradient or equivalently
# discrete Dirichelet energy Hessian

temp = -G.transpose()
K = -G.transpose() * T * G
print("|K-L|: ", (K - L).norm())