コード例 #1
0
def compute_v2(v, gt_mesh):
    new_v = igl.eigen.MatrixXd(np.array(v, dtype=np.double))
    S = igl.eigen.MatrixXd()
    I = igl.eigen.MatrixXi()
    C = igl.eigen.MatrixXd()
    N = igl.eigen.MatrixXd()

    igl.signed_distance(new_v, gt_mesh.v, gt_mesh.f,
                        igl.SignedDistanceType.SIGNED_DISTANCE_TYPE_UNSIGNED,
                        S, I, C, N)
    distance = np.array(S)
    return np.average(distance)
コード例 #2
0
    def query(self, queries):
        """Returns numpy array of SDF values for each point in queries"""
        queryV = iglhelpers.p2e(queries)

        S = igl.eigen.MatrixXd()
        B = igl.eigen.MatrixXd()
        I = igl.eigen.MatrixXi()
        C = igl.eigen.MatrixXd()
        N = igl.eigen.MatrixXd()

        if self._precomputed and self._signType == igl.SIGNED_DISTANCE_TYPE_FAST_WINDING_NUMBER:
            # generate samples from precomputed bvh's
            print("[INFO] Generating SDFs")
            igl.signed_distance_fast_winding_number(queryV, self._V, self._F,
                                                    self._tree, self._fwn_bvh,
                                                    S)
            print("[INFO] SDFs done")
        else:
            igl.signed_distance(queryV, self._V, self._F, self._signType, S, I,
                                C, N)

        return iglhelpers.e2p(S)
コード例 #3
0
        z = lerp(res, Vmin, Vmax, zi, 2)
        for yi in range(res[1]):
            y = lerp(res, Vmin, Vmax, yi, 1)
            for xi in range(res[0]):
                x = lerp(res, Vmin, Vmax, xi, 0)
                GV.setRow(xi + res[0] * (yi + res[1] * zi), igl.eigen.MatrixXd([[x, y, z]]))

    # compute values
    print("Computing distances...")
    S = igl.eigen.MatrixXd()
    B = igl.eigen.MatrixXd()
    I = igl.eigen.MatrixXi()
    C = igl.eigen.MatrixXd()
    N = igl.eigen.MatrixXd()

    igl.signed_distance(GV, V, F, igl.SIGNED_DISTANCE_TYPE_PSEUDONORMAL, S, I, C, N)
    # Convert distances to binary inside-outside data --> aliasing artifacts
    B = S.copy()
    for e in range(B.rows()):
        if B[e] > 0:
            B[e] = 1
        else:
            if B[e] < 0:
                B[e] = -1
            else:
                B[e] = 0

    print("Marching cubes...")
    SV = igl.eigen.MatrixXd()
    BV = igl.eigen.MatrixXd()
    SF = igl.eigen.MatrixXi()
コード例 #4
0
        for yi in range(res[1]):
            y = lerp(res, Vmin, Vmax, yi, 1)
            for xi in range(res[0]):
                x = lerp(res, Vmin, Vmax, xi, 0)
                GV.setRow(xi + res[0] * (yi + res[1] * zi),
                          igl.eigen.MatrixXd([[x, y, z]]))

    # compute values
    print("Computing distances...")
    S = igl.eigen.MatrixXd()
    B = igl.eigen.MatrixXd()
    I = igl.eigen.MatrixXi()
    C = igl.eigen.MatrixXd()
    N = igl.eigen.MatrixXd()

    igl.signed_distance(GV, V, F, igl.SIGNED_DISTANCE_TYPE_PSEUDONORMAL, S, I,
                        C, N)
    # Convert distances to binary inside-outside data --> aliasing artifacts
    B = S.copy()
    for e in range(B.rows()):
        if B[e] > 0:
            B[e] = 1
        else:
            if B[e] < 0:
                B[e] = -1
            else:
                B[e] = 0

    print("Marching cubes...")
    SV = igl.eigen.MatrixXd()
    BV = igl.eigen.MatrixXd()
    SF = igl.eigen.MatrixXi()
コード例 #5
0
    for i, index in enumerate(np.random.permutation(opt.lighting.shape[0])):
        tic = time.time()
        optimizer.zero_grad()

        loss = rendering.loss_func_parallel(index, gt_transient, mesh,
                                            mesh_optimization, opt, render_opt,
                                            device)
        loss.backward()
        optimizer.step()

        mesh.v = igl.eigen.MatrixXd(mesh_optimization.v.cpu().data.numpy())
        S = igl.eigen.MatrixXd()
        I = igl.eigen.MatrixXi()
        C = igl.eigen.MatrixXd()
        N = igl.eigen.MatrixXd()
        igl.signed_distance(mesh.v, space_carving_mesh.v, space_carving_mesh.f,
                            igl.SignedDistanceType(0), S, I, C, N)
        for x in list(compress(range(mesh.v.rows()), S > 0)):
            mesh.v.setRow(x, C.row(x))

        igl.per_face_normals(mesh.v, mesh.f, mesh.fn)

        l2, transient = rendering.evaluate_L2(gt_transient, mesh, render_opt)
        print('%05d update time: %5.5f L2 loss: %5.5f ' %
              (t * opt.lighting.shape[0] + i, time.time() - tic, l2))
        l2_record[t * opt.lighting.shape[0] + i] = l2
        filename = folder_name + '%05d.mat' % (t * opt.lighting.shape[0] + i)
        scipy.io.savemat(filename,
                         mdict={
                             'v': np.array(mesh.v),
                             'transient': transient,
                             'l2': l2,