def setUp(self): self.input = ph.Input(np.sin) phi = cr.Function(np.sin) psi = cr.Function(np.cos) self.t_funcs = np.array([phi, psi]) register_base("funcs", self.t_funcs, overwrite=True) self.test_funcs = ph.TestFunction("funcs") self.s_funcs = np.array([cr.Function(self.scale)])[[0, 0]] register_base("scale_funcs", self.s_funcs, overwrite=True) self.scale_funcs = ph.ScalarFunction("scale_funcs") nodes, self.ini_funcs = cure_interval(LagrangeFirstOrder, (0, 1), node_count=2) register_base("prod_ini_funcs", self.ini_funcs, overwrite=True) self.field_var = ph.FieldVariable("prod_ini_funcs") self.field_var_dz = ph.SpatialDerivedFieldVariable("prod_ini_funcs", 1)
def test_ScalarTerm(self): self.assertRaises(TypeError, ph.ScalarTerm, 7) # factor is number self.assertRaises(TypeError, ph.ScalarTerm, cr.Function(np.sin)) # factor is Function ph.ScalarTerm(self.input) self.assertRaises(ValueError, ph.ScalarTerm, self.test_func) # integration has to be done t1 = ph.ScalarTerm(self.xdz_at1) self.assertEqual(t1.scale, 1.0) # default scale # check if automated evaluation works self.assertTrue(np.allclose(t1.arg.args[0].data, np.array([-1, 1])))
def setUp(self): z_start = 0 z_end = 1 z_step = 0.1 self.dz = sim.Domain(bounds=(z_start, z_end), num=9) t_start = 0 t_end = 10 t_step = 0.01 self.dt = sim.Domain(bounds=(t_start, t_end), step=t_step) self.params = ut.Parameters self.params.node_distance = 0.1 self.params.m = 1.0 self.params.order = 8 self.params.sigma = 1 self.params.tau = 1 self.y_end = 10 self.u = tr.FlatString(0, self.y_end, z_start, z_end, 0, 5, self.params) def x(z, t): """ initial conditions for testing """ return 0 def x_dt(z, t): """ initial conditions for testing """ return 0 # initial conditions self.ic = np.array([ cr.Function(lambda z: x(z, 0)), # x(z, 0) cr.Function(lambda z: x_dt(z, 0)), # dx_dt(z, 0) ])
def setUp(self): self.input = ph.Input(np.sin) self.phi = np.array([cr.Function(lambda x: 2 * x)]) register_base("phi", self.phi, overwrite=True) self.test_func = ph.TestFunction("phi") nodes, self.ini_funcs = cure_interval(LagrangeFirstOrder, (0, 1), node_count=2) register_base("ini_funcs", self.ini_funcs, overwrite=True) self.xdt = ph.TemporalDerivedFieldVariable("ini_funcs", order=1) self.xdz_at1 = ph.SpatialDerivedFieldVariable("ini_funcs", order=1, location=1) self.prod = ph.Product(self.input, self.xdt)
def setUp(self): interval = (0, 1) nodes, funcs = sf.cure_interval(sf.LagrangeFirstOrder, interval, 3) register_base("funcs", funcs, overwrite=True) x = ph.FieldVariable("funcs") x_dt = ph.TemporalDerivedFieldVariable("funcs", 1) x_dz = ph.SpatialDerivedFieldVariable("funcs", 1) register_base("scal_func", cr.Function(np.exp), overwrite=True) exp = ph.ScalarFunction("scal_func") alpha = 2 self.term1 = ph.IntegralTerm(x_dt, interval, 1 + alpha) self.term2 = ph.IntegralTerm(x_dz, interval, 2) self.term3 = ph.IntegralTerm(ph.Product(x, exp), interval) self.weight_label = "funcs" self.weights = np.hstack([1, 1, 1, 2, 2, 2])
def setUp(self): interval = (0, 1) nodes, funcs = sf.cure_interval(sf.LagrangeFirstOrder, interval, 3) register_base("funcs", funcs, overwrite=True) x_at1 = ph.FieldVariable("funcs", location=1) x_dt_at1 = ph.TemporalDerivedFieldVariable("funcs", 1, location=1) x_dz_at0 = ph.SpatialDerivedFieldVariable("funcs", 1, location=0) exp_func = cr.Function(np.exp) register_base("exp_func", exp_func, overwrite=True) exp_at1 = ph.ScalarFunction("exp_func", location=1) alpha = 2 self.term1 = ph.ScalarTerm(x_dt_at1, 1 + alpha) self.term2 = ph.ScalarTerm(x_dz_at0, 2) self.term3 = ph.ScalarTerm(ph.Product(x_at1, exp_at1)) self.weight_label = "funcs" self.weights = np.array([1, 1, 1, 2, 2, 2])
def test_IntegralTerm(self): self.assertRaises(TypeError, ph.IntegralTerm, 7, (0, 1)) # integrand is number self.assertRaises(TypeError, ph.IntegralTerm, cr.Function(np.sin), (0, 1)) # integrand is Function self.assertRaises(ValueError, ph.IntegralTerm, self.xdz_at1, (0, 1)) # nothing left after evaluation self.assertRaises(TypeError, ph.IntegralTerm, self.xdt, [0, 1]) # limits is list ph.IntegralTerm(self.test_func, (0, 1)) # integrand is Placeholder self.assertRaises(ValueError, ph.IntegralTerm, self.input, (0, 1)) # nothing to do ph.IntegralTerm(self.xdt, (0, 1)) # integrand is Placeholder ph.IntegralTerm(self.prod, (0, 1)) # integrand is Product t1 = ph.IntegralTerm(self.xdt, (0, 1)) self.assertEqual(t1.scale, 1.0) # default scale self.assertEqual(t1.arg.args[0], self.xdt) # automated product creation self.assertEqual(t1.limits, (0, 1))
# eigenfunctions target system eig_freq_t = np.sqrt(-eig_values.astype(complex)) norm_fac_t = norm_fac * eig_freq / eig_freq_t eig_funcs_t = np.asarray( [ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t, spatial_domain.bounds, norm_fac_t[i]) for i in range(n)]) re.register_base("eig_funcs_t", eig_funcs_t, overwrite=True) # init controller x_at_1 = ph.FieldVariable("eig_funcs", location=1) xt_at_1 = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=1) controller = ct.Controller(ct.ControlLaw([ph.ScalarTerm(x_at_1, 1), ph.ScalarTerm(xt_at_1, -1)])) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: init_profile) initial_weights = cr.project_on_base(start_state, eig_funcs) # init trajectory traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type) # input with feedback control_law = sim.SimulationInputSum([traj, controller]) # determine (A,B) with modal-transfomation A = np.diag(eig_values) B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)]) ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law) # evaluate desired output data z_d = np.linspace(0, l, len(spatial_domain))
def setUp(self): self.psi = cr.Function(np.sin) register_base("funcs", self.psi, overwrite=True) self.funcs = ph.TestFunction("funcs")
def test_it(self): # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 10 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 10 # original system parameters a2 = 1.5 a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0]) a0_z = lambda z: 3 alpha = -2 beta = -3 self.param = [a2, a1_z, a0_z, alpha, beta] # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t) # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param, d_end=self.l) self.param_i = a2, 0, a0_i, alpha_i, beta_i _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate( self.param_t) self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti # create (not normalized) target (_t) eigenfunctions eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies( self.param_t, self.l, self.n) init_eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds) for om in eig_freq_t ]) init_adjoint_eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param_t, self.dz.bounds) for om in eig_freq_t ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs_t = [ cr.normalize_function(init_eig_funcs_t[i], init_adjoint_eig_funcs_t[i]) for i in range(self.n) ] eig_funcs_t = np.array( [f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t]) self.adjoint_eig_funcs_t = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t]) # # transformed original eigenfunctions self.eig_funcs = np.array([ ef.TransformedSecondOrderEigenfunction( self.eig_val_t[i], [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0], [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4)) for i in range(self.n) ]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register functions register_base("eig_funcs_t", eig_funcs_t, overwrite=True) register_base("adjoint_eig_funcs_t", self.adjoint_eig_funcs_t, overwrite=True) register_base("eig_funcs", self.eig_funcs, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l) d_field_variable_t = ph.SpatialDerivedFieldVariable( "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l) field_variable = ph.FieldVariable("eig_funcs", location=self.l) d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l) # intermediate (_i) and target intermediate (_ti) transformations by z=l # x_i = x * transform_i_at_l self.transform_i_at_l = np.exp( integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x = x_i * inv_transform_i_at_l self.inv_transform_i_at_l = np.exp( -integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x_ti = x_t * transform_ti_at_l self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l) # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ ph.ScalarTerm(fem_field_variable, self.transform_i_at_l) ] self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)] self.xd_i_at_l = [ ph.ScalarTerm(d_field_variable, self.transform_i_at_l), ph.ScalarTerm(field_variable, self.transform_i_at_l * a1_z(self.l) / 2 / a2) ] self.x_ti_at_l = [ ph.ScalarTerm(field_variable_t, self.transform_ti_at_l) ] self.xd_ti_at_l = [ ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l), ph.ScalarTerm(field_variable_t, self.transform_ti_at_l * a1_t / 2 / a2) ] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad( lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0] controller = ut.get_parabolic_robin_backstepping_controller( state=self.x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz, original_beta=beta_i, target_beta=beta_ti, trajectory=self.traj, scale=self.inv_transform_i_at_l) rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros( (len(self.fem_funcs))), self.dt) eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): # original system parameters a2 = 1.5 a1 = 2.5 a0 = 28 alpha = -2 beta = -3 param = [a2, a1, a0, alpha, beta] adjoint_param = ef.get_adjoint_rad_evp_param(param) # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta param_t = [a2, a1_t, a0_t, alpha_t, beta_t] # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param) _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t) # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 # create (not normalized) eigenfunctions eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies( param, self.l, n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # eigenfunctions from target system ("_t") eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - eig_val) / a2) eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(eig_freq_t[i], param_t, dz.bounds).scale(eig_funcs[i](0)) for i in range(n) ]) # register eigenfunctions register_base("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) register_base("eig_funcs_t", eig_funcs_t, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, self.l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # controller initialization x_at_l = ph.FieldVariable("eig_funcs", location=self.l) xd_at_l = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l) x_t_at_l = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l) xd_t_at_l = ph.SpatialDerivedFieldVariable("eig_funcs_t", 1, weight_label="eig_funcs", location=self.l) combined_transform = lambda z: np.exp((a1_t - a1) / 2 / a2 * z) int_kernel_zz = lambda z: alpha_ti - alpha_i + (a0_i - a0_ti ) / 2 / a2 * z controller = ct.Controller( ct.ControlLaw([ ph.ScalarTerm(x_at_l, (beta_i - beta_ti - int_kernel_zz(self.l))), ph.ScalarTerm(x_t_at_l, -beta_ti * combined_transform(self.l)), ph.ScalarTerm(x_at_l, beta_ti), ph.ScalarTerm(xd_t_at_l, -combined_transform(self.l)), ph.ScalarTerm(x_t_at_l, -a1_t / 2 / a2 * combined_transform(self.l)), ph.ScalarTerm(xd_at_l, 1), ph.ScalarTerm(x_at_l, a1 / 2 / a2 + int_kernel_zz(self.l)) ])) # init trajectory traj = tr.RadTrajectory(self.l, T, param_t, bound_cond_type, actuation_type) traj.scale = combined_transform(self.l) # input with feedback control_law = sim.SimulationInputSum([traj, controller]) # control_law = sim.simInputSum([traj]) # determine (A,B) with modal-transformation A = np.diag(np.real(eig_val)) B = a2 * np.array( [adjoint_eig_funcs[i](self.l) for i in range(len(eig_freq))]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=control_law) # simulate t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): # original system parameters a2 = 1 a1 = 0 # attention: only a2 = 1., a1 =0 supported in this test case a0 = 0 param = [a2, a1, a0, None, None] # target system parameters (controller parameters) a1_t = 0 a0_t = 0 # attention: only a2 = 1., a1 =0 and a0 =0 supported in this test case param_t = [a2, a1_t, a0_t, None, None] # system/simulation parameters actuation_type = 'dirichlet' bound_cond_type = 'dirichlet' l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 # eigenvalues /-functions original system eig_freq = np.array([(i + 1) * np.pi / l for i in range(n)]) eig_values = a0 - a2 * eig_freq**2 - a1**2 / 4. / a2 norm_fac = np.ones(eig_freq.shape) * np.sqrt(2) eig_funcs = np.asarray([ ef.SecondOrderDirichletEigenfunction(eig_freq[i], param, dz.bounds, norm_fac[i]) for i in range(n) ]) register_base("eig_funcs", eig_funcs, overwrite=True) # eigenfunctions target system eig_freq_t = np.sqrt(-eig_values.astype(complex)) norm_fac_t = norm_fac * eig_freq / eig_freq_t eig_funcs_t = np.asarray([ ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t, dz.bounds, norm_fac_t[i]) for i in range(n) ]) register_base("eig_funcs_t", eig_funcs_t, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, eig_funcs) # init trajectory / input of target system traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type) # init controller x_at_1 = ph.FieldVariable("eig_funcs", location=1) xt_at_1 = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=1) controller = ct.Controller( ct.ControlLaw( [ph.ScalarTerm(x_at_1, 1), ph.ScalarTerm(xt_at_1, -1)])) # input with feedback control_law = sim.SimulationInputSum([traj, controller]) # determine (A,B) with modal-transfomation A = np.diag(eig_values) B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)]) ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law) # simulate t, q = sim.simulate_state_space(ss, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 0.5) # display results if show_plots: eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): actuation_type = 'dirichlet' bound_cond_type = 'dirichlet' param = [1., -2., -1., None, None] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, _, _ = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) omega = np.array([(i + 1) * np.pi / l for i in range(spatial_disc)]) eig_values = a0 - a2 * omega**2 - a1**2 / 4. / a2 norm_fak = np.ones(omega.shape) * np.sqrt(2) eig_funcs = np.array([ ef.SecondOrderDirichletEigenfunction(omega[i], param, dz.bounds, norm_fak[i]) for i in range(spatial_disc) ]) register_base("eig_funcs", eig_funcs, overwrite=True) adjoint_eig_funcs = np.array([ ef.SecondOrderDirichletEigenfunction(omega[i], adjoint_param, dz.bounds, norm_fak[i]) for i in range(spatial_disc) ]) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) # derive sate-space system rad_pde = ut.get_parabolic_dirichlet_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(eig_values) B = -a2 * np.array( [adjoint_eig_funcs[i].derive()(l) for i in range(spatial_disc)]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u) # TODO: resolve the big tolerance (rtol=3e-01) between ss_modal.A and ss_weak.A # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue( np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])), np.sort(np.linalg.eigvals(ss_modal.A[1])), rtol=3e-1, atol=0.)) self.assertTrue( np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1])) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_modal(self): order = 8 def char_eq(w): return w * (np.sin(w) + self.params.m * w * np.cos(w)) def phi_k_factory(freq, derivative_order=0): def eig_func(z): return np.cos( freq * z) - self.params.m * freq * np.sin(freq * z) def eig_func_dz(z): return -freq * (np.sin(freq * z) + self.params.m * freq * np.cos(freq * z)) def eig_func_ddz(z): return freq**2 * (-np.cos(freq * z) + self.params.m * freq * np.sin(freq * z)) if derivative_order == 0: return eig_func elif derivative_order == 1: return eig_func_dz elif derivative_order == 2: return eig_func_ddz else: raise ValueError # create eigenfunctions eig_frequencies = ut.find_roots(char_eq, n_roots=order, grid=np.arange(0, 1e3, 2), rtol=-2) print("eigenfrequencies:") print(eig_frequencies) # create eigen function vectors class SWMFunctionVector(cr.ComposedFunctionVector): """ String With Mass Function Vector, necessary due to manipulated scalar product """ @property def func(self): return self.members["funcs"][0] @property def scalar(self): return self.members["scalars"][0] eig_vectors = [] for n in range(order): eig_vectors.append( SWMFunctionVector( cr.Function(phi_k_factory(eig_frequencies[n]), derivative_handles=[ phi_k_factory(eig_frequencies[n], der_order) for der_order in range(1, 3) ], domain=self.dz.bounds, nonzero=self.dz.bounds), phi_k_factory(eig_frequencies[n])(0))) # normalize eigen vectors norm_eig_vectors = [cr.normalize_function(vec) for vec in eig_vectors] norm_eig_funcs = np.array([vec.func for vec in norm_eig_vectors]) register_base("norm_eig_funcs", norm_eig_funcs, overwrite=True) norm_eig_funcs[0](1) # debug print eigenfunctions if 0: func_vals = [] for vec in eig_vectors: func_vals.append(np.vectorize(vec.func)(self.dz)) norm_func_vals = [] for func in norm_eig_funcs: norm_func_vals.append(np.vectorize(func)(self.dz)) clrs = ["r", "g", "b", "c", "m", "y", "k", "w"] for n in range(1, order + 1, len(clrs)): pw_phin_k = pg.plot(title="phin_k for k in [{0}, {1}]".format( n, min(n + len(clrs), order))) for k in range(len(clrs)): if k + n > order: break pw_phin_k.plot(x=np.array(self.dz), y=norm_func_vals[n + k - 1], pen=clrs[k]) app.exec_() # create terms of weak formulation terms = [ ph.IntegralTerm(ph.Product( ph.FieldVariable("norm_eig_funcs", order=(2, 0)), ph.TestFunction("norm_eig_funcs")), self.dz.bounds, scale=-1), ph.ScalarTerm(ph.Product( ph.FieldVariable("norm_eig_funcs", order=(2, 0), location=0), ph.TestFunction("norm_eig_funcs", location=0)), scale=-1), ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("norm_eig_funcs", location=1))), ph.ScalarTerm(ph.Product( ph.FieldVariable("norm_eig_funcs", location=1), ph.TestFunction("norm_eig_funcs", order=1, location=1)), scale=-1), ph.ScalarTerm( ph.Product( ph.FieldVariable("norm_eig_funcs", location=0), ph.TestFunction("norm_eig_funcs", order=1, location=0))), ph.IntegralTerm( ph.Product(ph.FieldVariable("norm_eig_funcs"), ph.TestFunction("norm_eig_funcs", order=2)), self.dz.bounds) ] modal_pde = sim.WeakFormulation(terms, name="swm_lib-modal") eval_data = sim.simulate_system(modal_pde, self.ic, self.dt, self.dz, der_orders=(2, 0)) # display results if show_plots: win = vis.PgAnimatedPlot(eval_data[0:2], title="modal approx and derivative") win2 = vis.PgSurfacePlot(eval_data[0]) app.exec_() # test for correct transition self.assertTrue( np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3))
def test_it(self): actuation_type = 'robin' bound_cond_type = 'robin' param = [2., 1.5, -3., -1., -.5] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, alpha, beta = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # register eigenfunctions register_base("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(np.real_if_close(eig_val)) B = a2 * np.array( [adjoint_eig_funcs[i](l) for i in range(len(eig_freq))]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u) # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue( np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])), np.sort(np.linalg.eigvals(ss_modal.A[1])), rtol=1e-05, atol=0.)) self.assertTrue( np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1])) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
from pyinduct import eigenfunctions as ef from pyinduct import simulation as sim from pyinduct import visualization as vis # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' l = 1. T = 1 spatial_domain = sim.Domain(bounds=(0, l), num=30) temporal_domain = sim.Domain(bounds=(0, T), num=1e2) n = 10 # original system parameters a2 = .5 a1_z = cr.Function(lambda z: 0.1 * np.exp(4 * z), derivative_handles=[lambda z: 0.4 * np.exp(4 * z)]) a0_z = lambda z: 1 + 10 * z + 2 * np.sin(4 * np.pi / l * z) alpha = -1 beta = -1 param = [a2, a1_z, a0_z, alpha, beta] # target system parameters (controller parameters) a1_t = -0 a0_t = -6 alpha_t = 3 beta_t = 3 param_t = [a2, a1_t, a0_t, alpha_t, beta_t] adjoint_param_t = ef.get_adjoint_rad_evp_param(param_t) # original intermediate ("_i") and target intermediate ("_ti") system parameters _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param, d_end=l)