コード例 #1
0
def test_generic_serde():
    gen = SizedTestType(10)

    payload = serialize(gen)
    assert payload == {'size': 10}
    new_gen = deserialize(payload, SizedTestType)
    assert issubclass(new_gen, SizedTestType)
    assert new_gen.size == 10

    obj = AClass([1 for _ in range(10)])
    assert serialize(obj, gen) == serialize(obj, new_gen)
コード例 #2
0
def test_hierarchy_serde():
    gen = ChildGenericType(10)

    payload = serialize(gen)
    assert payload == {'size': 10, 'type': 'child'}

    new_gen = deserialize(payload, AbstractType)
    assert issubclass(new_gen, ChildGenericType)
    assert new_gen.size == 10

    obj = AClass([1 for _ in range(10)])
    assert serialize(obj, gen) == serialize(obj, new_gen)
コード例 #3
0
ファイル: base.py プロジェクト: rubaha96/ebonite
    def __call__(self, *args, **kwargs):
        if args and kwargs:
            raise ValueError(
                'Parameters should be passed either in positional or in keyword fashion, not both'
            )
        if len(args) > len(self.method.args) or len(kwargs) > len(
                self.method.args):
            raise ValueError(
                f'Too much parameters given, expected: {len(self.method.args)}'
            )

        data = {}
        for i, arg in enumerate(self.method.args):
            obj = None
            if len(args) > i:
                obj = args[i]
            if arg.name in kwargs:
                obj = kwargs[arg.name]
            if obj is None:
                raise ValueError(
                    f'Parameter with name "{arg.name}" (position {i}) should be passed'
                )

            data[arg.name] = serialize(obj, arg.type)

        logger.debug('Calling server method "%s", args: %s ...',
                     self.method.name, data)
        out = self.call_method(self.method.name, data)
        logger.debug('Server call returned %s', out)
        return deserialize(out, self.method.out_type)
コード例 #4
0
ファイル: conftest.py プロジェクト: geffy/ebonite
def serde_and_compare(obj,
                      obj_type=None,
                      true_payload=None,
                      check_payload=True):
    if obj_type is None:
        obj_type = type(obj)
        check_subtype = False
        check_instance = True
    else:
        check_subtype = not issubclass(obj_type, Serializer)
        check_instance = False

    payload = pyjackson.serialize(obj, obj_type)
    if true_payload is not None:
        if check_payload:
            assert true_payload == payload
        payload = true_payload
    new_obj = pyjackson.deserialize(payload, obj_type)
    if check_subtype:
        assert issubclass(type(new_obj),
                          obj_type), '{} type must be subtype of {}'.format(
                              new_obj, obj_type)
    elif check_instance:
        assert isinstance(new_obj, obj_type)
    assert obj == new_obj
コード例 #5
0
def main():
    ebnt = ebonite.Ebonite.local(clear=True)

    data, target = get_data()
    # we want easy way to transform anything to datasets, so its either this or ebonite.create_dataset (same for metrics)
    # for now there is no difference, however if we want manage datasets with meta and art repos, we use client
    # or create with ebonite.create_... and then push with ebnt.push_... like for models
    # dataset = ebnt.create_dataset(data, target)

    # here we postpone setting task input and output types for easy task creation
    task = ebnt.get_or_create_task('my_project', 'regression_is_my_profession')
    task.add_metric('auc', roc_auc_score)
    task.add_metric('custom', my_custom_metric)
    task.add_evaluation('train', data, target, ['auc', 'custom'])

    pprint(task.evaluation_sets)
    pprint(task.datasets)
    pprint(task.metrics)

    # omit providing dataset as we already have it in task
    mc = task.create_and_push_model(constant, data, model_name='constant')
    mt = task.create_and_push_model(truth, data, model_name='truth')

    pprint(mc.wrapper.methods)
    pprint(mt.wrapper.methods)

    # maybe save result to models? also need different ways to evaluate "not all"
    result = task.evaluate_all()

    print(result)
    ebnt._bind(task)
    task.save()
    pprint(serialize(task))
コード例 #6
0
ファイル: test_dataset.py プロジェクト: zyfra/ebonite
def test_unordered_columns(df_type, data):
    data_rev = data[list(reversed(data.columns))]
    obj = serialize(data_rev, df_type)
    data2 = deserialize(obj, df_type)

    assert data.equals(data2), f'{data} \n!=\n{data2}'
    assert data2 is not data
コード例 #7
0
ファイル: test_dataset.py プロジェクト: rubaha96/ebonite
def test_dataframe_type(df_type):
    assert df_type.requirements.modules == ['pandas']
    data = pd.DataFrame([{'a': 1, 'b': 1}, {'a': 2, 'b': 2}])

    obj = serialize(data, df_type)
    data2 = deserialize(obj, df_type)

    assert data.equals(data2)
コード例 #8
0
ファイル: test_dataset.py プロジェクト: zyfra/ebonite
def test_df_type(df_type_fx, request):
    df_type = request.getfixturevalue(df_type_fx)
    assert issubclass(df_type, DataFrameType)

    obj = serialize(df_type)
    new_df_type = deserialize(obj, DatasetType)

    assert df_type == new_df_type
コード例 #9
0
ファイル: test_dataset_type.py プロジェクト: rubaha96/ebonite
def test_dict_with_list_dataset_type():
    data = {'a': ['b']}
    dt = DatasetAnalyzer.analyze(data)

    assert dt == DictDatasetType(
        {'a': TupleLikeListDatasetType([PrimitiveDatasetType('str')])})

    assert serialize(data, dt) == data
    assert deserialize(data, dt) == data

    with pytest.raises(DeserializationError):
        deserialize('', dt)

    with pytest.raises(SerializationError):
        serialize('', dt)

    payload = serialize(dt)
    assert payload == {
        'type': 'dict',
        'item_types': {
            'a': {
                'type': 'tuple_like_list',
                'items': [{
                    'type': 'primitive',
                    'ptype': 'str'
                }]
            }
        }
    }

    payload = serialize(DTHolder(dt))
    assert payload == {
        'dt': {
            'type': 'dict',
            'item_types': {
                'a': {
                    'type': 'tuple_like_list',
                    'items': [{
                        'type': 'primitive',
                        'ptype': 'str'
                    }]
                }
            }
        }
    }
コード例 #10
0
ファイル: test_set.py プロジェクト: mike0sv/pyjackson
def test_set_hint():
    @make_string
    class CClass(Comparable):
        def __init__(self, value: Set[str]):
            self.value = value

    value = CClass({'a', 'b'})
    serde_and_compare(value)
    assert serialize(value) in [{'value': ['a', 'b']}, {'value': ['b', 'a']}]
コード例 #11
0
def test_unsized(times):
    real_data = [[1, 2] for _ in range(times)]

    array = MockNumpyNdarray(real_data)
    container = MultidimUnsizedArrayContainer(array)
    ser = serialize(container)
    assert real_data == ser['arr']
    new_container = deserialize(ser, MultidimUnsizedArrayContainer)
    assert new_container == container
コード例 #12
0
def test_dataframe_type():
    data = pd.DataFrame([{'a': 1, 'b': 1}, {'a': 2, 'b': 2}])

    df_type = DataFrameType(['a', 'b'])

    obj = serialize(data, df_type)
    data2 = deserialize(obj, df_type)

    assert data.equals(data2)
コード例 #13
0
ファイル: test_dataset.py プロジェクト: zyfra/ebonite
def test_dataframe_type(df_type, data):
    assert df_type.requirements.modules == ['pandas']

    obj = serialize(data, df_type)
    payload = json.dumps(obj)
    loaded = json.loads(payload)
    data2 = deserialize(loaded, df_type)

    assert data.equals(data2)
コード例 #14
0
def test_inner_hierarchy_serde():
    holder = GenericTypeHolder(ChildGenericType(15))

    payload = serialize(holder)

    assert payload == {'gen_type': {'type': 'child', 'size': 15}}

    new_holder = deserialize(payload, GenericTypeHolder)

    assert holder == new_holder
コード例 #15
0
ファイル: test_dataset.py プロジェクト: DariaMishina/ebonite
def test_all(data2):
    df_type = DatasetAnalyzer.analyze(data2)

    obj = serialize(data2, df_type)
    payload = json.dumps(obj)
    loaded = json.loads(payload)
    data = deserialize(loaded, df_type)

    assert data2.equals(data)
    assert data2 is not data
コード例 #16
0
ファイル: core.py プロジェクト: rubaha96/ebonite
 def wrapper_meta(self) -> dict:
     """
     :return: pyjackson representation of :class:`~ebonite.core.objects.wrapper.ModelWrapper` for this model: e.g.,
       this provides possibility to move a model between repositories without its dependencies being installed
     """
     if self._wrapper_meta is None:
         if self._wrapper is None:
             raise ValueError("Either 'wrapper' or 'wrapper_meta' should be provided")
         self._wrapper_meta = serialize(self._wrapper)
     return self._wrapper_meta
コード例 #17
0
ファイル: test_dataset.py プロジェクト: zyfra/ebonite
def test_all(df):
    df_type = DatasetAnalyzer.analyze(df)

    obj = serialize(df, df_type)
    payload = json.dumps(obj)
    loaded = json.loads(payload)
    data = deserialize(loaded, df_type)

    assert df is not data
    pandas_assert(data, df)
コード例 #18
0
def test_multidim():
    real_data = [[1, 2, 3], [4, 5, 6]]
    ext_type = MockNumpyNdarray(real_data)
    c = MultidimArrayContainer(ext_type)
    ser = serialize(c)

    assert real_data == ser['arr']

    deser = deserialize(ser, MultidimArrayContainer)

    assert deser == c
コード例 #19
0
def test_sized():
    real_data = [1, 2, 3]
    ext_type = MockNumpyNdarray(real_data)
    c = SizedArrayContainer(ext_type)
    ser = serialize(c)

    assert real_data == ser['arr']

    deser = deserialize(ser, SizedArrayContainer)

    assert deser == c
コード例 #20
0
ファイル: config.py プロジェクト: mike0sv/ssci
    def save(self, path: str = None):
        path = path or SSCIConf.CONFIG_PATH
        try:
            with open(path, "r") as f:
                data = yaml.safe_load(f)
        except FileNotFoundError:
            data = {"ssci": {}}

        data["ssci"]["deploy"] = serialize(self)
        with open(path, "w") as f:
            yaml.safe_dump(data, f)
コード例 #21
0
ファイル: test_set.py プロジェクト: mike0sv/pyjackson
def test_set():
    value = {AClass('a'), AClass('b')}
    serde_and_compare(value, Set[AClass])
    assert serialize(value, Set[AClass]) in [[{
        'value': 'a'
    }, {
        'value': 'b'
    }], [{
        'value': 'b'
    }, {
        'value': 'a'
    }]]
コード例 #22
0
ファイル: test_pyjackson.py プロジェクト: mike0sv/pyjackson
def test_type_hierarchy__type_import():
    payload = {
        'type': 'tests.not_imported_directly.ChildClass',
        'field': 'aaa'
    }
    obj = deserialize(payload, RootClass)
    assert isinstance(obj, RootClass)
    assert obj.__class__.__name__ == 'ChildClass'
    assert obj.field == 'aaa'

    new_payload = serialize(obj)

    assert new_payload == payload
コード例 #23
0
ファイル: test_dataset_type.py プロジェクト: rubaha96/ebonite
def test_list_dataset_type(ldt):
    assert ldt == ListDatasetType(PrimitiveDatasetType('int'), 2)

    payload = serialize(ldt)

    assert payload == {
        'type': 'list',
        'dtype': {
            'type': 'primitive',
            'ptype': 'int'
        },
        'size': 2
    }
コード例 #24
0
ファイル: test_core.py プロジェクト: zyfra/ebonite
def test_pipeline__load(meta, model, task_saved_art):
    task_saved_art.push_model(model)

    p = model.as_pipeline('predict')
    task_saved_art.add_pipeline(p)

    p = deserialize(serialize(meta.get_pipeline_by_id(p.id)), Pipeline)
    assert p is not None
    assert len(p.models) == 0
    p.bind_meta_repo(meta)
    p.load()
    assert len(p.models) == 1
    assert model.name in p.models
    assert p.models[model.name] == model
コード例 #25
0
ファイル: test_dataset_type.py プロジェクト: rubaha96/ebonite
def test_dict_dataset_type(ddt):
    assert ddt == DictDatasetType({'a': PrimitiveDatasetType('int')})

    payload = serialize(ddt)

    assert payload == {
        'type': 'dict',
        'item_types': {
            "a": {
                'type': 'primitive',
                'ptype': 'int'
            }
        }
    }
コード例 #26
0
ファイル: test_dataset_type.py プロジェクト: rubaha96/ebonite
def test_inner_list_dataset_type(ldt):
    dth = DTHolder(ldt)

    payload = serialize(dth)

    assert payload == {
        'dt': {
            'type': 'list',
            'dtype': {
                'type': 'primitive',
                'ptype': 'int'
            },
            'size': 2
        }
    }
コード例 #27
0
ファイル: test_dataset_type.py プロジェクト: rubaha96/ebonite
def test_inner_dict_dataset_type(ddt):
    dth = DTHolder(ddt)

    payload = serialize(dth)

    assert payload == {
        'dt': {
            'type': 'dict',
            'item_types': {
                "a": {
                    'type': 'primitive',
                    'ptype': 'int'
                }
            }
        }
    }
コード例 #28
0
ファイル: test_dataset_type.py プロジェクト: rubaha96/ebonite
def test_inner_tuple_like_list_dataset_type(tlldt):
    dth = DTHolder(tlldt)

    payload = serialize(dth)

    assert payload == {
        'dt': {
            'type':
            'tuple_like_list',
            'items': [{
                'type': 'primitive',
                'ptype': 'str'
            }, {
                'type': 'primitive',
                'ptype': 'int'
            }]
        }
    }
コード例 #29
0
ファイル: test_dataset_type.py プロジェクト: rubaha96/ebonite
def test_tuple_like_list_dataset_type(tlldt):
    assert tlldt == TupleLikeListDatasetType(
        [PrimitiveDatasetType('str'),
         PrimitiveDatasetType('int')])

    payload = serialize(tlldt)

    assert payload == {
        'type':
        'tuple_like_list',
        'items': [{
            'type': 'primitive',
            'ptype': 'str'
        }, {
            'type': 'primitive',
            'ptype': 'int'
        }]
    }
コード例 #30
0
ファイル: test_dataset.py プロジェクト: zyfra/ebonite
def test_datetime():
    data = pd.DataFrame([{
        'a': 1,
        'b': datetime.now()
    }, {
        'a': 2,
        'b': datetime.now()
    }])
    df_type = DatasetAnalyzer.analyze(data)
    assert issubclass(df_type, DataFrameType)

    obj = serialize(data, df_type)
    payload = json.dumps(obj)
    loaded = json.loads(payload)
    data2 = deserialize(loaded, df_type)

    assert data.equals(data2)
    assert data2 is not data