def test_predict_heads_with_novelties(self): """Test scoring heads with labeling as novel w.r.t. training and testing.""" heads_df = get_head_prediction_df(self.model, 'conferences', 'brazil', testing=self.testing_mapped_triples) self.assertEqual(['head_id', 'head_label', 'score', 'in_training', 'in_testing'], list(heads_df.columns)) self.assertEqual(self.model.num_entities, len(heads_df.index)) training_heads = set(heads_df.loc[heads_df['in_training'], 'head_label']) self.assertEqual({'usa', 'india', 'ussr', 'poland', 'cuba'}, training_heads) testing_heads = set(heads_df.loc[heads_df['in_testing'], 'head_label']) self.assertEqual(set(), testing_heads)
def test_predict_heads_with_novelties(self): """Test scoring heads with labeling as novel w.r.t. training and testing.""" heads_df = get_head_prediction_df( self.model, "conferences", "brazil", triples_factory=self.dataset.training, testing=self.testing_mapped_triples, ) self.assertEqual( ["head_id", "head_label", "score", "in_training", "in_testing"], list(heads_df.columns)) self.assertEqual(self.model.num_entities, len(heads_df.index)) training_heads = set(heads_df.loc[heads_df["in_training"], "head_label"]) self.assertEqual({"usa", "india", "ussr", "poland", "cuba"}, training_heads) testing_heads = set(heads_df.loc[heads_df["in_testing"], "head_label"]) self.assertEqual(set(), testing_heads)
indices=None).cpu().detach().numpy() e_idx = ann(entity_embedding_tensor) e_idx.save_index(entity_index) from pykeen.models import predict terms = [ 'http://purl.enanomapper.org/onto/ENM_8000299', 'http://semanticscience.org/resource/CHEMINF_000228', 'http://purl.jp/bio/4/id/200906029372903982', 'http://purl.enanomapper.org/onto/ENM_0000084' ] for term in terms: print(term) try: predicted_heads_df = predict.get_head_prediction_df( result.model, 'keyword', term, triples_factory=result.training) predicted_heads_df.head() except: pass with open("{}/entity_id_to_label.json".format(kg_file), 'r') as infile: entity_id_to_label = json.load(infile) import pandas as pd df = pd.DataFrame.from_dict(entity_id_to_label, orient='index', columns=["id"]) import numpy as np from sklearn.decomposition import PCA pca = PCA(n_components=2) pca.fit(entity_embedding_tensor) X = pca.transform(entity_embedding_tensor) df["x"] = X[:, 0]