コード例 #1
0
ファイル: _mga_1dsm.py プロジェクト: darioizzo/pykep
    def fitness(self, x):
        # 1 -  we 'decode' the chromosome recording the various times of flight
        # (days) in the list T and the cartesian components of vinf
        T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x)

        # 2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs + 1))
        r_P = list([None] * (self.__n_legs + 1))
        v_P = list([None] * (self.__n_legs + 1))
        DV = list([0.0] * (self.__n_legs + 1))
        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = self.seq[i].eph(t_P[i])

        # 3 - We start with the first leg
        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(
            r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu)

        # Lambert arc to reach seq[1]
        dt = (1 - x[5]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

        # 4 - And we proceed with each successive leg
        for i in range(1, self.__n_legs):
            # Fly-by
            v_out = fb_prop(v_end_l, v_P[i], x[
                            8 + (i - 1) * 4] * self.seq[i].radius, x[7 + (i - 1) * 4], self.seq[i].mu_self)
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(
                r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu)
            # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[9 + (i - 1) * 4]) * T[i] * DAY2SEC
            l = lambert_problem(r, r_P[i + 1], dt,
                                self.common_mu, False, False)
            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            # DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])

        # Last Delta-v
        if self.__add_vinf_arr:
            DV[-1] = norm([a - b for a, b in zip(v_end_l, v_P[-1])])

        if self.__add_vinf_dep:
            DV[0] += x[3]

        if self._obj_dim == 1:
            return (sum(DV),)
        else:
            return (sum(DV), sum(T))
コード例 #2
0
ファイル: _pl2pl_N_impulses.py プロジェクト: darioizzo/pykep
    def fitness(self, x):
        # 1 -  we 'decode' the chromosome into the various deep space
        # manouvres times (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            rsc, vsc = propagate_lagrangian(
                rsc, vsc, T[i] * DAY2SEC, self.__common_mu)
        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)

        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        DV1 = norm([a - b for a, b in zip(v_beg_l, vsc)])
        DV2 = norm([a - b for a, b in zip(v_end_l, v_target)])

        DV_others = sum(x[5::4])
        if self.obj_dim == 1:
            return (DV1 + DV2 + DV_others,)
        else:
            return (DV1 + DV2 + DV_others, x[1])
コード例 #3
0
ファイル: _pl2pl_N_impulses.py プロジェクト: darioizzo/pykep
    def plot(self, x, axes=None):
        """
        ax = prob.plot_trajectory(x, axes=None)

        - x: encoded trajectory
        - axes: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from pykep.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if axes is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axes = fig.gca(projection='3d')

        axes.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))
        plot_planet(self.start, t0=epoch(x[0]), color=(
            0.8, 0.6, 0.8), legend=True, units=AU, ax=axes, s=0)
        plot_planet(self.target, t0=epoch(
            x[0] + x[1]), color=(0.8, 0.6, 0.8), legend=True, units=AU, ax=axes, s=0)

        DV_list = x[5::4]
        maxDV = max(DV_list)
        DV_list = [s / maxDV * 30 for s in DV_list]
        colors = ['b', 'r'] * (len(DV_list) + 1)

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            axes.scatter(rsc[0] / AU, rsc[1] / AU, rsc[2] /
                         AU, color='k', s=DV_list[i])
            plot_kepler(rsc, vsc, T[i] * DAY2SEC, self.__common_mu,
                        N=200, color=colors[i], legend=False, units=AU, ax=axes)
            rsc, vsc = propagate_lagrangian(
                rsc, vsc, T[i] * DAY2SEC, self.__common_mu)

        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)
        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        plot_lambert(l, sol=0, color=colors[
                     i + 1], legend=False, units=AU, ax=axes, N=200)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
        DV1 = norm([a - b for a, b in zip(v_beg_l, vsc)])
        DV2 = norm([a - b for a, b in zip(v_end_l, v_target)])

        axes.scatter(rsc[0] / AU, rsc[1] / AU, rsc[2] / AU,
                     color='k', s=min(DV1 / maxDV * 30, 40))
        axes.scatter(r_target[0] / AU, r_target[1] / AU,
                     r_target[2] / AU, color='k', s=min(DV2 / maxDV * 30, 40))

        return axes
コード例 #4
0
ファイル: _mga_1dsm.py プロジェクト: darioizzo/pykep
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from pykep.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various times of flight
        # (days) in the list T and the cartesian components of vinf
        T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x)

        # 2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs + 1))
        r_P = list([None] * (self.__n_legs + 1))
        v_P = list([None] * (self.__n_legs + 1))
        DV = list([None] * (self.__n_legs + 1))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = planet.eph(t_P[i])
            plot_planet(planet, t0=t_P[i], color=(
                0.8, 0.6, 0.8), legend=True, units=AU, ax=axis)

        # 3 - We start with the first leg
        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(
            r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu)

        plot_kepler(r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu,
                    N=100, color='b', legend=False, units=AU, ax=axis)

        # Lambert arc to reach seq[1]
        dt = (1 - x[5]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        plot_lambert(l, sol=0, color='r', legend=False, units=AU, ax=axis)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

        # 4 - And we proceed with each successive leg
        for i in range(1, self.__n_legs):
            # Fly-by
            v_out = fb_prop(v_end_l, v_P[i], x[
                            8 + (i - 1) * 4] * self.seq[i].radius, x[7 + (i - 1) * 4], self.seq[i].mu_self)
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(
                r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu)
            plot_kepler(r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC,
                        self.common_mu, N=100, color='b', legend=False, units=AU, ax=axis)
            # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[9 + (i - 1) * 4]) * T[i] * DAY2SEC

            l = lambert_problem(r, r_P[i + 1], dt,
                                self.common_mu, False, False)
            plot_lambert(l, sol=0, color='r', legend=False,
                         units=AU, N=1000, ax=axis)

            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            # DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
        plt.show()
        return axis
コード例 #5
0
ファイル: _mga_1dsm.py プロジェクト: darioizzo/pykep
    def pretty(self, x):
        """
        prob.plot(x)

        - x: encoded trajectory

        Prints human readable information on the trajectory represented by the decision vector x

        Example::

          print(prob.pretty(x))
        """
        # 1 -  we 'decode' the chromosome recording the various times of flight
        # (days) in the list T and the cartesian components of vinf
        T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x)

        # 2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs + 1))
        r_P = list([None] * (self.__n_legs + 1))
        v_P = list([None] * (self.__n_legs + 1))
        DV = list([None] * (self.__n_legs + 1))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = self.seq[i].eph(t_P[i])

        # 3 - We start with the first leg
        print("First Leg: " + self.seq[0].name + " to " + self.seq[1].name)
        print("Departure: " + str(t_P[0]) +
              " (" + str(t_P[0].mjd2000) + " mjd2000) ")
        print("Duration: " + str(T[0]) + "days")
        print("VINF: " + str(x[4] / 1000) + " km/sec")

        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(
            r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu)

        print("DSM after " + str(x[5] * T[0]) + " days")

        # Lambert arc to reach seq[1]
        dt = (1 - x[5]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])
        print("DSM magnitude: " + str(DV[0]) + "m/s")

        # 4 - And we proceed with each successive leg
        for i in range(1, self.__n_legs):
            print("\nleg no. " + str(i + 1) + ": " +
                  self.seq[i].name + " to " + self.seq[i + 1].name)
            print("Duration: " + str(T[i]) + "days")
            # Fly-by
            v_out = fb_prop(v_end_l, v_P[i], x[
                            8 + (i - 1) * 4] * self.seq[i].radius, x[7 + (i - 1) * 4], self.seq[i].mu_self)
            print(
                "Fly-by epoch: " + str(t_P[i]) + " (" + str(t_P[i].mjd2000) + " mjd2000) ")
            print(
                "Fly-by radius: " + str(x[8 + (i - 1) * 4]) + " planetary radii")
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(
                r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu)
            print("DSM after " + str(x[9 + (i - 1) * 4] * T[i]) + " days")
            # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[9 + (i - 1) * 4]) * T[i] * DAY2SEC
            l = lambert_problem(r, r_P[i + 1], dt,
                                self.common_mu, False, False)
            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            # DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
            print("DSM magnitude: " + str(DV[i]) + "m/s")

        # Last Delta-v
        print("\nArrival at " + self.seq[-1].name)
        DV[-1] = norm([a - b for a, b in zip(v_end_l, v_P[-1])])
        print(
            "Arrival epoch: " + str(t_P[-1]) + " (" + str(t_P[-1].mjd2000) + " mjd2000) ")
        print("Arrival Vinf: " + str(DV[-1]) + "m/s")
        print("Total mission time: " + str(sum(T) / 365.25) + " years")