コード例 #1
0
ファイル: test_model.py プロジェクト: rpatil524/pykg2vec
def testing_function(name):
    """Function to test the models with arguments."""
    # getting the customized configurations from the command-line arguments.
    args = KGEArgParser().get_args(['-exp', 'True', '-mn', name])

    # Preparing data and cache the data for later usage
    knowledge_graph = KnowledgeGraph(dataset=args.dataset_name)
    knowledge_graph.prepare_data()

    # Extracting the corresponding model config and definition from Importer().
    config_def, model_def = Importer().import_model_config(name)
    config = config_def(args)

    config.epochs = 1
    config.test_step = 1
    config.test_num = 10
    config.save_model = False
    config.debug = True
    config.ent_hidden_size = 10
    config.rel_hidden_size = 10
    config.channels = 2

    model = model_def(**config.__dict__)

    # Create, Compile and Train the model. While training, several evaluation will be performed.
    trainer = Trainer(model, config)
    trainer.build_model()
    trainer.train_model()
コード例 #2
0
ファイル: test_kg.py プロジェクト: zentim/pykg2vec
def test_userdefined_dataset():
    custom_dataset_path = os.path.join(
        os.path.dirname(os.path.abspath(__file__)), 'resource',
        'custom_dataset')
    knowledge_graph = KnowledgeGraph(dataset="userdefineddataset",
                                     custom_dataset_path=custom_dataset_path)
    knowledge_graph.prepare_data()
    knowledge_graph.dump()

    knowledge_graph.read_cache_data('triplets_train')
    knowledge_graph.read_cache_data('triplets_test')
    knowledge_graph.read_cache_data('triplets_valid')
    knowledge_graph.read_cache_data('hr_t')
    knowledge_graph.read_cache_data('tr_h')
    knowledge_graph.read_cache_data('idx2entity')
    knowledge_graph.read_cache_data('idx2relation')
    knowledge_graph.read_cache_data('entity2idx')
    knowledge_graph.read_cache_data('relation2idx')

    knowledge_graph.dataset.read_metadata()
    knowledge_graph.dataset.dump()

    assert knowledge_graph.kg_meta.tot_train_triples == 1
    assert knowledge_graph.kg_meta.tot_test_triples == 1
    assert knowledge_graph.kg_meta.tot_valid_triples == 1
    assert knowledge_graph.kg_meta.tot_entity == 6
    assert knowledge_graph.kg_meta.tot_relation == 3
コード例 #3
0
def main():
    # getting the customized configurations from the command-line arguments.
    args = KGEArgParser().get_args(sys.argv[1:])

    # Preparing data and cache the data for later usage
    knowledge_graph = KnowledgeGraph(dataset=args.dataset_name,
                                     custom_dataset_path=args.dataset_path)
    knowledge_graph.prepare_data()

    # Extracting the corresponding model config and definition from Importer().
    config_def, model_def = Importer().import_model_config(
        args.model_name.lower())
    config = config_def(args)
    model = model_def(config)

    # Create, Compile and Train the model. While training, several evaluation will be performed.
    trainer = Trainer(model, config)
    trainer.build_model()
    trainer.train_model()

    #can perform all the inference here after training the model
    trainer.enter_interactive_mode()

    code.interact(local=locals())

    trainer.exit_interactive_mode()
コード例 #4
0
def test_hyperparamter_loader(model_name):
    knowledge_graph = KnowledgeGraph(dataset="freebase15k")
    knowledge_graph.prepare_data()

    # getting the customized configurations from the command-line arguments.
    args = KGETuneArgParser().get_args([])

    hyperparams = HyperparamterLoader(args).load_hyperparameter("freebase15k", model_name)

    assert hyperparams["optimizer"] is not None
コード例 #5
0
ファイル: test_kg.py プロジェクト: hyfhkc/pykg2vec
def test_fb15k_meta():
    """Function to test the the knowledge graph parse for Freebase and basic operations."""
    knowledge_graph = KnowledgeGraph(dataset="freebase15k")
    knowledge_graph.force_prepare_data()
    knowledge_graph.dump()

    assert knowledge_graph.is_cache_exists()
    knowledge_graph.prepare_data()

    knowledge_graph.dataset.read_metadata()
    knowledge_graph.dataset.dump()
コード例 #6
0
def main():
    args = KGEArgParser().get_args(sys.argv[1:])

    knowledge_graph = KnowledgeGraph(dataset=args.dataset_name, custom_dataset_path=args.dataset_path)
    knowledge_graph.prepare_data()

    config_def, model_def = Importer().import_model_config(args.model_name.lower())
    config = config_def(args)
    model = model_def(**config.__dict__)

    trainer = Trainer(model, config)
    trainer.build_model()
    trainer.train_model()
コード例 #7
0
def testing_function_with_args(name,
                               l1_flag,
                               distance_measure=None,
                               bilinear=None,
                               display=False):
    """Function to test the models with arguments."""
    # getting the customized configurations from the command-line arguments.
    args = KGEArgParser().get_args([])

    # Preparing data and cache the data for later usage
    knowledge_graph = KnowledgeGraph(dataset=args.dataset_name)
    knowledge_graph.prepare_data()

    # Extracting the corresponding model config and definition from Importer().
    config_def, model_def = Importer().import_model_config(name)
    config = config_def(args)

    config.epochs = 1
    config.test_step = 1
    config.test_num = 10
    config.disp_result = display
    config.save_model = True
    config.L1_flag = l1_flag
    config.debug = True

    model = model_def(**config.__dict__)

    # Create, Compile and Train the model. While training, several evaluation will be performed.
    trainer = Trainer(model, config)
    trainer.build_model()
    trainer.train_model()

    #can perform all the inference here after training the model
    trainer.enter_interactive_mode()

    #takes head, relation
    tails = trainer.infer_tails(1, 10, topk=5)
    assert len(tails) == 5

    #takes relation, tail
    heads = trainer.infer_heads(10, 20, topk=5)
    assert len(heads) == 5

    #takes head, tail
    relations = trainer.infer_rels(1, 20, topk=5)
    assert len(relations) == 5

    trainer.exit_interactive_mode()
コード例 #8
0
ファイル: experiment.py プロジェクト: hyfhkc/pykg2vec
def experiment(model_name):
    args = KGEArgParser().get_args([])
    args.exp = True
    args.dataset_name = "fb15k"

    # Preparing data and cache the data for later usage
    knowledge_graph = KnowledgeGraph(dataset=args.dataset_name,
                                     custom_dataset_path=args.dataset_path)
    knowledge_graph.prepare_data()

    # Extracting the corresponding model config and definition from Importer().
    config_def, model_def = Importer().import_model_config(model_name)
    config = config_def(args)
    model = model_def(**config.__dict__)

    # Create, Compile and Train the model. While training, several evaluation will be performed.
    trainer = Trainer(model, config)
    trainer.build_model()
    trainer.train_model()
コード例 #9
0
def tunning_function(name):
    """Function to test the tuning of the models."""
    knowledge_graph = KnowledgeGraph(dataset="freebase15k")
    knowledge_graph.prepare_data()

    # getting the customized configurations from the command-line arguments.
    args = KGETuneArgParser().get_args([])

    # initializing bayesian optimizer and prepare data.
    args.debug = True
    args.model = name

    bays_opt = BaysOptimizer(args=args)
    bays_opt.config_local.test_num = 10

    # perform the golden hyperparameter tuning.
    bays_opt.optimize()

    assert bays_opt.return_best() is not None
コード例 #10
0
ファイル: test_trainer.py プロジェクト: zentim/pykg2vec
def get_model(result_path_dir, configured_epochs, patience, config_key):
    args = KGEArgParser().get_args([])

    knowledge_graph = KnowledgeGraph(dataset="Freebase15k")
    knowledge_graph.prepare_data()

    config_def, model_def = Importer().import_model_config(config_key)
    config = config_def(args)

    config.epochs = configured_epochs
    config.test_step = 1
    config.test_num = 1
    config.disp_result = False
    config.save_model = False
    config.path_result = result_path_dir
    config.debug = True
    config.patience = patience

    return model_def(**config.__dict__), config
コード例 #11
0
def test_return_empty_before_optimization(mocked_fmin):
    """Function to test the tuning of the models."""
    knowledge_graph = KnowledgeGraph(dataset="freebase15k")
    knowledge_graph.prepare_data()

    # getting the customized configurations from the command-line arguments.
    args = KGETuneArgParser().get_args([])

    # initializing bayesian optimizer and prepare data.
    args.debug = True
    args.model = 'analogy'

    bays_opt = BaysOptimizer(args=args)
    bays_opt.config_local.test_num = 10

    with pytest.raises(Exception) as e:
        bays_opt.return_best()

    assert mocked_fmin.called is False
    assert e.value.args[0] == 'Cannot find golden setting. Has optimize() been called?'
コード例 #12
0
ファイル: test_visualization.py プロジェクト: hyfhkc/pykg2vec
def test_visualization(tmpdir):
    result_path_dir = tmpdir.mkdir("result_path")

    args = KGEArgParser().get_args([])

    knowledge_graph = KnowledgeGraph(dataset="Freebase15k")
    knowledge_graph.prepare_data()

    config_def, model_def = Importer().import_model_config("analogy")
    config = config_def(args=args)

    config.epochs = 5
    config.test_step = 1
    config.test_num = 1
    config.disp_result = True
    config.save_model = False
    config.debug = True
    config.patience = -1
    config.plot_embedding = True
    config.plot_training_result = True
    config.plot_testing_result = True
    config.path_figures = result_path_dir
    config.path_result = result_path_dir

    trainer = Trainer(model_def(**config.__dict__), config)
    trainer.build_model()
    trainer.train_model()

    files = [f for f in listdir(result_path_dir)]
    assert any(map(lambda f: "_entity_plot" in f, files))
    assert any(map(lambda f: "_rel_plot" in f, files))
    assert any(map(lambda f: "_ent_n_rel_plot" in f, files))
    assert any(map(lambda f: "_training_loss_plot_" in f, files))
    assert any(map(lambda f: "_testing_hits_plot" in f, files))
    assert any(map(lambda f: "_testing_latex_table_" in f, files))
    assert any(map(lambda f: "_testing_table_" in f, files))
    assert any(map(lambda f: "_testing_rank_plot_" in f, files))
    assert any(map(lambda f: "_testing_hits_plot_" in f, files))
コード例 #13
0
ファイル: kgpipeline.py プロジェクト: syyunn/pykg2vec
def main():
    model_name = "transe"
    dataset_name = "Freebase15k"

    # 1. Tune the hyper-parameters for the selected model and dataset.
    # p.s. this is using training and validation set.
    args = KGETuneArgParser().get_args(
        ['-mn', model_name, '-ds', dataset_name])

    # initializing bayesian optimizer and prepare data.
    bays_opt = BaysOptimizer(args=args)

    # perform the golden hyperparameter tuning.
    bays_opt.optimize()
    best = bays_opt.return_best()

    # 2. Evaluate final model using the found best hyperparameters on testing set.
    args = KGEArgParser().get_args(['-mn', model_name, '-ds', dataset_name])

    # Preparing data and cache the data for later usage
    knowledge_graph = KnowledgeGraph(dataset=args.dataset_name)
    knowledge_graph.prepare_data()

    # Extracting the corresponding model config and definition from Importer().
    config_def, model_def = Importer().import_model_config(
        args.model_name.lower())
    config = config_def(args)

    # Update the config params with the golden hyperparameter
    for k, v in best.items():
        config.__dict__[k] = v
    model = model_def(**config.__dict__)

    # Create, Compile and Train the model.
    trainer = Trainer(model, config)
    trainer.build_model()
    trainer.train_model()