コード例 #1
0
ファイル: test_diagdom.py プロジェクト: wyllmein2000/pykrylov
    def testPoisson2D(self):
        # Solve 1D Poisson systems of various sizes
        for n in self.n:

            h = 1.0 / n
            lmbd_min = 4.0 / h / h * (sin(pi * h / 2.0)**2 +
                                      sin(pi * h / 2.0)**2)
            lmbd_max = 4.0 / h / h * (sin((n - 1) * pi * h / 2.0)**2 + sin(
                (n - 1) * pi * h / 2.0)**2)
            cond = lmbd_max / lmbd_min
            tol = cond * self.eps

            n2 = n * n
            A = LinearOperator(n2,
                               n2,
                               lambda x: Poisson2dMatvec(x),
                               symmetric=True)
            e = np.ones(n2)
            rhs = A * e
            cg = CG(A, matvec_max=2 * n2, outputStream=sys.stderr)
            cg.solve(rhs)
            err = np.linalg.norm(e - cg.bestSolution) / n
            sys.stderr.write(self.fmt % (n2, cg.nMatvec, cg.residNorm, err))

            # Adjust tol because allclose() uses infinity norm
            self.assertTrue(np.allclose(e, cg.bestSolution, rtol=err * n))
コード例 #2
0
    def __init__(self, k, s, w=None, niter=10, **kwargs):
        """
        TODO: empty docsting
        """
        # get geometry
        ncoils = len(s)
        ndims = s[0].ndim
        ngrid = s[0].shape
        nknots = k.size / ndims
        k = k.reshape([nknots, ndims])

        # set shared plan for each ForFT and AdjFT operations
        self._plan = get_plan(nknots, ngrid)
        self._plan.precompute(k)

        # define linear operators for iterative SENSE algo
        if w is not None:
            D_block = DiagonalOperator(diag=w.ravel())
        else:
            D_block = IdentityOperator(nargin=nknots)
        blocks = [D_block] * ncoils
        D = BlockDiagonalLinearOperator(blocks=blocks)

        diag = np.sqrt(np.sum([_s**2 for _s in s], axis=0))
        I = DiagonalOperator(diag=diag.ravel())

        F = LinearOperator(
            nargin=self._plan.N_total,
            nargout=self._plan.M,
            matvec=lambda u: self._plan.forward(f_hat=u),
            matvec_transp=lambda u: self._plan.adjoint(f=u).ravel(),
            dtype=np.complex128,
        )
        blocks = [[F * DiagonalOperator(diag=_s.ravel())] for _s in s]

        E = BlockLinearOperator(blocks=blocks)

        self.D = D
        self.E = E
        self.I = I
        self.m = None
        self.rhs = None
        self.shape = (ngrid, nknots * ncoils)
        self.solution = None
        self.solver = CG(op=I * E.T * D * E * I, matvec_max=niter)
コード例 #3
0
ファイル: test_diagdom.py プロジェクト: modeha/pykrylov
    def testPoisson1D(self):
        # Solve 1D Poisson systems of various sizes
        for n in self.n:

            lmbd_min = 4.0 * sin(pi/2.0/n) ** 2
            lmbd_max = 4.0 * sin((n-1)*pi/2.0/n) ** 2
            cond = lmbd_max/lmbd_min
            tol = cond * self.eps

            e = np.ones(n)
            rhs = Poisson1dMatvec(e)
            cg = CG(Poisson1dMatvec,
                    matvec_max=2*n,
                    outputStream=sys.stderr)
            cg.solve(rhs)
            err = np.linalg.norm(e-cg.bestSolution)/sqrt(n)
            sys.stderr.write(self.fmt % (n, cg.nMatvec, cg.residNorm, err))
            self.failUnless(np.allclose(e, cg.bestSolution, rtol=tol))
コード例 #4
0
    def testPoisson1D(self):
        # Solve 1D Poisson systems of various sizes
        for n in self.n:

            lmbd_min = 4.0 * sin(pi/2.0/n) ** 2
            lmbd_max = 4.0 * sin((n-1)*pi/2.0/n) ** 2
            cond = lmbd_max/lmbd_min
            tol = cond * self.eps

            A = LinearOperator(n, n,
                               lambda x: Poisson1dMatvec(x),
                               symmetric=True)
            e = np.ones(n)
            rhs = A * e
            cg = CG(A, matvec_max=2*n, outputStream=sys.stderr)
            cg.solve(rhs)
            err = np.linalg.norm(e-cg.bestSolution)/sqrt(n)
            sys.stderr.write(self.fmt % (n, cg.nMatvec, cg.residNorm, err))
            self.assertTrue(np.allclose(e, cg.bestSolution, rtol=tol))
コード例 #5
0
ファイル: test_diagdom.py プロジェクト: wyllmein2000/pykrylov
    def testPoisson1D(self):
        # Solve 1D Poisson systems of various sizes
        for n in self.n:

            lmbd_min = 4.0 * sin(pi / 2.0 / n)**2
            lmbd_max = 4.0 * sin((n - 1) * pi / 2.0 / n)**2
            cond = lmbd_max / lmbd_min
            tol = cond * self.eps

            A = LinearOperator(n,
                               n,
                               lambda x: Poisson1dMatvec(x),
                               symmetric=True)
            e = np.ones(n)
            rhs = A * e
            cg = CG(A, matvec_max=2 * n, outputStream=sys.stderr)
            cg.solve(rhs)
            err = np.linalg.norm(e - cg.bestSolution) / sqrt(n)
            sys.stderr.write(self.fmt % (n, cg.nMatvec, cg.residNorm, err))
            self.assertTrue(np.allclose(e, cg.bestSolution, rtol=tol))
コード例 #6
0
ファイル: test_diagdom.py プロジェクト: modeha/pykrylov
    def testPoisson2D(self):
        # Solve 1D Poisson systems of various sizes
        for n in self.n:

            h = 1.0/n
            lmbd_min = 4.0/h/h*(sin(pi*h/2.0)**2 + sin(pi*h/2.0)**2)
            lmbd_max = 4.0/h/h*(sin((n-1)*pi*h/2.0)**2 + sin((n-1)*pi*h/2.0)**2)
            cond = lmbd_max/lmbd_min
            tol = cond * self.eps

            n2 = n*n
            e = np.ones(n2)
            rhs = Poisson2dMatvec(e)
            cg = CG(Poisson2dMatvec,
                    matvec_max=2*n2,
                    outputStream=sys.stderr)
            cg.solve(rhs)
            err = np.linalg.norm(e-cg.bestSolution)/n
            sys.stderr.write(self.fmt % (n2, cg.nMatvec, cg.residNorm, err))

            # Adjust tol because allclose() uses infinity norm
            self.failUnless(np.allclose(e, cg.bestSolution, rtol=err*n))
コード例 #7
0
    def testPoisson2D(self):
        # Solve 1D Poisson systems of various sizes
        for n in self.n:

            h = 1.0/n
            lmbd_min = 4.0/h/h*(sin(pi*h/2.0)**2 + sin(pi*h/2.0)**2)
            lmbd_max = 4.0/h/h*(sin((n-1)*pi*h/2.0)**2 + sin((n-1)*pi*h/2.0)**2)
            cond = lmbd_max/lmbd_min
            tol = cond * self.eps

            n2 = n*n
            A = LinearOperator(n2, n2,
                               lambda x: Poisson2dMatvec(x),
                               symmetric=True)
            e = np.ones(n2)
            rhs = A * e
            cg = CG(A, matvec_max=2*n2, outputStream=sys.stderr)
            cg.solve(rhs)
            err = np.linalg.norm(e-cg.bestSolution)/n
            sys.stderr.write(self.fmt % (n2, cg.nMatvec, cg.residNorm, err))

            # Adjust tol because allclose() uses infinity norm
            self.assertTrue(np.allclose(e, cg.bestSolution, rtol=err*n))