コード例 #1
0
def multiple_optima(gene_number=937, resolution=80, model_restarts=10, seed=10000, max_iters=300, optimize=True, plot=True):
    """
    Show an example of a multimodal error surface for Gaussian process
    regression. Gene 939 has bimodal behaviour where the noisy mode is
    higher.
    """

    # Contour over a range of length scales and signal/noise ratios.
    length_scales = np.linspace(0.1, 60., resolution)
    log_SNRs = np.linspace(-3., 4., resolution)

    try:import pods
    except ImportError:
        print 'pods unavailable, see https://github.com/sods/ods for example datasets'
        return
    data = pods.datasets.della_gatta_TRP63_gene_expression(data_set='della_gatta',gene_number=gene_number)
    # data['Y'] = data['Y'][0::2, :]
    # data['X'] = data['X'][0::2, :]

    data['Y'] = data['Y'] - np.mean(data['Y'])

    lls = GPy.examples.regression._contour_data(data, length_scales, log_SNRs, GPy.kern.RBF)
    if plot:
        pb.contour(length_scales, log_SNRs, np.exp(lls), 20, cmap=pb.cm.jet)
        ax = pb.gca()
        pb.xlabel('length scale')
        pb.ylabel('log_10 SNR')

        xlim = ax.get_xlim()
        ylim = ax.get_ylim()

    # Now run a few optimizations
    models = []
    optim_point_x = np.empty(2)
    optim_point_y = np.empty(2)
    np.random.seed(seed=seed)
    for i in range(0, model_restarts):
        # kern = GPy.kern.RBF(1, variance=np.random.exponential(1.), lengthscale=np.random.exponential(50.))
        kern = GPy.kern.RBF(1, variance=np.random.uniform(1e-3, 1), lengthscale=np.random.uniform(5, 50))

        m = GPy.models.GPRegression(data['X'], data['Y'], kernel=kern)
        m.likelihood.variance = np.random.uniform(1e-3, 1)
        optim_point_x[0] = m.rbf.lengthscale
        optim_point_y[0] = np.log10(m.rbf.variance) - np.log10(m.likelihood.variance);

        # optimize
        if optimize:
            m.optimize('scg', xtol=1e-6, ftol=1e-6, max_iters=max_iters)

        optim_point_x[1] = m.rbf.lengthscale
        optim_point_y[1] = np.log10(m.rbf.variance) - np.log10(m.likelihood.variance);

        if plot:
            pb.arrow(optim_point_x[0], optim_point_y[0], optim_point_x[1] - optim_point_x[0], optim_point_y[1] - optim_point_y[0], label=str(i), head_length=1, head_width=0.5, fc='k', ec='k')
        models.append(m)

    if plot:
        ax.set_xlim(xlim)
        ax.set_ylim(ylim)
    return m # (models, lls)
コード例 #2
0
def draw_bar(xs, y, dat):
        global scale

        for ix in range(len(xs)):
                if dat[ix] > 0: color = "red"
                else: color = "blue"
                pl.arrow(xs[ix], y/2., scale*dat[ix], 0, color=color)
コード例 #3
0
ファイル: base.py プロジェクト: smoitra87/ssystem
 def plot_profile(self):
     self.logger.debug('Plotting Profile curves')
     try:
         xnew = np.linspace(self.time[0], self.time[-1], num=50)
         #Function handle for generating plot interpolate points
         f1 = lambda (tck): interpolate.splev(xnew, tck)
         ynew = np.array(map(f1, self.tcks)).T
         ax = pl.gca()
         color_list = ['r', 'g', 'b', 'c', 'y']
         ax.set_color_cycle(color_list)
         pl.plot(self.time, self.var, 'x', xnew, ynew)
         # plot arrows
         arrow_scale = 40.0
         dx = (self.time[-1] - self.time[0]) / arrow_scale
         dy = self.slopes.T * dx  # transpose operation here
         for ii in range(self.n_sample):
             t = self.time[ii]
             X = self.var[ii, :]
             DY = dy[:, ii]
             for jj in range(self.n_var):
                 pl.arrow(t, X[jj], dx, DY[jj], linewidth=1)
         pl.title('Plot of spline fitted biochem profile vs time')
         pl.xlabel('time')
         pl.ylabel('profile')
         pl.axis('tight')
         pl.show()
     except AttributeError:
         sys.stderr.writelines("Define Profile before trying to plot..!")
         raise
コード例 #4
0
ファイル: diagrams_gf.py プロジェクト: certik/hfsolver
 def arc(xx, yy, index, draw_dots=True):
     A = array([xx[0], yy[0]])
     B = array([xx[1], yy[1]])
     if draw_dots:
         plot(A[0], A[1], "ko")
         plot(B[0], B[1], "ko")
     AB = B-A
     AB_len = sqrt(sum(AB**2))
     AB = AB / AB_len
     pAB = array([AB[1], -AB[0]])
     AB_mid = (A+B)/2.
     if index == 1:
         R = AB_mid + pAB * AB_len/1.5
     else:
         R = AB_mid + pAB * AB_len/4.
     r = sqrt(sum((A-R)**2))
     P_arrow = R - pAB * r
     # Draw the arc from A to B centered at R
     phi1 = atan2((A-R)[1], (A-R)[0])
     phi2 = atan2((B-R)[1], (B-R)[0])
     n = 100 # number of divisions
     phi = linspace(phi1, phi2, n)
     xx = r*cos(phi)+R[0]
     yy = r*sin(phi)+R[1]
     plot(xx, yy, "k-", lw=2)
     x, x2 = xx[n/2-1:n/2+1]
     y, y2 = yy[n/2-1:n/2+1]
     dx = x2-x
     dy = y2-y
     arrow(x, y, dx/2, dy/2, fc="black", head_width=0.05)
コード例 #5
0
ファイル: find_slop.py プロジェクト: lisrael1/quants
def get_cov_ev(cov, plot=False):
    import numpy as np
    import pandas as pd
    cov = np.mat(cov)
    eig_vals, eig_vecs = np.linalg.eig(cov)
    df = pd.DataFrame()
    df['ev_x'] = eig_vecs[0, :].tolist()[0]
    df['ev_y'] = eig_vecs[1, :].tolist()[0]
    df['e_values'] = eig_vals
    df['e_values_sqrt'] = df.e_values.apply(np.sqrt)
    df.fillna(0, inplace=True)
    df = df.sort_values(by='e_values', ascending=False).reset_index()
    main_axis=df.ev_x[0] * df.e_values_sqrt[0], df.ev_y[0] * df.e_values_sqrt[0]
    angle = vector_to_angle(main_axis[0], main_axis[1])  # from -135 to 45 degrees
    angle = angle if angle >= -90 else 180+angle  # to make it from -90 to 90

    if plot:
        print('cov\n\t' + str(cov).replace('\n', '\n\t'))
        import pylab as plt
        samples = 100
        df_original_multi_samples = pd.DataFrame(np.random.multivariate_normal([0, 0], cov, samples), columns=['X', 'Y'])
        df_original_multi_samples.plot.scatter(x='X', y='Y', alpha=0.1)
        m = df_original_multi_samples.max().max()
        plt.axis([-m, m, -m, m])

        for i in [0, 1]:  # 0 is the main eigenvector
            if df.ev_x[i] * df.e_values_sqrt[i] + df.ev_y[i] * df.e_values_sqrt[i]:  # cannot plot 0 size vector
                plt.arrow(0, 0,
                          df.ev_x[i] * df.e_values_sqrt[i], df.ev_y[i] * df.e_values_sqrt[i],
                          head_width=0.15, head_length=0.15,
                          length_includes_head=True, fc='k', ec='k')
            else:
                print('zero length eigenvector, skipping')
        plt.show()
    return df, angle
コード例 #6
0
ファイル: base.py プロジェクト: smoitra87/ssystem
	def plot_profile(self) :
		self.logger.debug('Plotting Profile curves') 
		try :
			xnew = np.linspace(self.time[0],self.time[-1],num=50)
			#Function handle for generating plot interpolate points
			f1 = lambda(tck) : interpolate.splev(xnew,tck)
			ynew = np.array(map(f1,self.tcks)).T
			ax = pl.gca()
			color_list = ['r','g','b','c','y']
			ax.set_color_cycle(color_list)
			pl.plot(self.time,self.var,'x',xnew,ynew);
			# plot arrows 
			arrow_scale = 40.0
			dx = (self.time[-1]-self.time[0])/arrow_scale;
			dy = self.slopes.T * dx  # transpose operation here
			for ii in range(self.n_sample) : 
				t = self.time[ii]
				X = self.var[ii,:]
				DY = dy[:,ii]
				for jj in range(self.n_var) :
					pl.arrow(t,X[jj],dx,DY[jj],linewidth=1)
			pl.title('Plot of spline fitted biochem profile vs time')
			pl.xlabel('time')
			pl.ylabel('profile')
			pl.axis('tight')
			pl.show()
		except AttributeError :
			sys.stderr.writelines(
			"Define Profile before trying to plot..!")
			raise
コード例 #7
0
def plot_ROC_Risk(w,
                  x,
                  y,
                  best_operating_point,
                  risk,
                  fname,
                  title,
                  TH=None,
                  NoTH=None):
    from matplotlib import rc
    from numpy import ones
    import pylab
    rc('font', family='serif', size=20)
    fig = pylab.figure(1, figsize=(8, 8), dpi=100, facecolor='w')
    ax = fig.add_subplot(111)
    fig.hold(True)
    m = w[0] / w[1]
    line_x = arange(0, 1, 0.001)
    line_y = ones(1000) - m * line_x
    pylab.fill_between(x, ones(len(y)), y, facecolor='#D0D0D0')
    pylab.plot(x, y, 'r', linewidth=3)
    best = [x[best_operating_point], y[best_operating_point]]
    pylab.plot(best[0],
               best[1],
               '*k',
               markersize=20,
               label='Risk$^*$    ={0:.3f}'.format(risk))
    pylab.plot(line_x, line_y, 'k', linewidth=3)
    midline = len(line_x) / 2
    arrow_x, arrow_y = line_x[midline], line_y[midline]
    pylab.arrow(arrow_x,
                arrow_y,
                -w[0] * 0.15,
                -w[1] * 0.15,
                head_length=.02,
                head_width=.02,
                linewidth=2,
                color='black')
    pylab.axis([-0.005, 1.001, -0.005, 1.001])
    pylab.xlabel('$FPR$')
    pylab.ylabel('$FNR$')
    pylab.title(title)
    if TH != None:
        pylab.plot(TH['fpr'],
                   TH['fnr'],
                   'ob',
                   markersize=12,
                   label='TH Risk={0:.3f}'.format(TH['risk']))
    if NoTH != None:
        pylab.plot(NoTH['fpr'],
                   NoTH['fnr'],
                   'sc',
                   markersize=12,
                   label='BM Risk={0:.3f}'.format(NoTH['risk']))
    pyplot.legend(numpoints=1, prop={'size': 16})
    pylab.savefig(fname)
    pylab.grid()
    ax.set_aspect('equal')
    pylab.show()
    pylab.close()
コード例 #8
0
def plotAssignment(idx, coords, centroids, warehouseCoord, output):
    V = max(idx) + 1
    cmap = plt.cm.get_cmap('Dark2')
    customerColors = [cmap(1.0 * idx[i] / V) for i in range(len(idx))]
    centroidColors = [cmap(1.0 * i / V) for i in range(V)]
    xy = coords

    pylab.scatter([warehouseCoord[0]], [warehouseCoord[1]])
    pylab.scatter(centroids[:,0], centroids[:,1], marker='o', s=500, linewidths=2, c='none')
    pylab.scatter(centroids[:,0], centroids[:,1], marker='x', s=500, linewidths=2, c=centroidColors)
    pylab.scatter(xy[:,0], xy[:,1], s=100, c=customerColors)

    for cluster in range(V):
        customerIndices = indices(cluster, idx)
        clusterCustomersCoords = [warehouseCoord] + [list(coords[i]) for i in customerIndices]

        N = len(clusterCustomersCoords)
        for i in range(N):
            j = (i+1) % N
            x = clusterCustomersCoords[i][0]
            y = clusterCustomersCoords[i][1]
            dx = clusterCustomersCoords[j][0] - clusterCustomersCoords[i][0]
            dy = clusterCustomersCoords[j][1] - clusterCustomersCoords[i][1]
            pylab.arrow(x, y, dx, dy, color=centroidColors[cluster], fc="k",
                        head_width=1.0, head_length=2.5, length_includes_head=True)

    pylab.savefig(output)
    pylab.close()
コード例 #9
0
def fig_spec(po, pos, sig_loc, typ=0):
    ax1 = py.subplot(gs[pos[2]:pos[3], pos[0]:pos[1]])
    set_axis(ax1, -0.05, 1.05, letter= po)
    freq, time_spec, spec_mtrx = spectrogram(sig_loc, Fs, nperseg=2*Fs)
    im = py.pcolormesh(time_spec/60, freq, spec_mtrx, 
                       norm = LogNorm(vmin = 1e1, vmax=5e2), vmax=400, cmap= 'Greens')
    py.ylim(0,150)
    # cbar=py.colorbar()
    # cbar.ax.set_title('power ($mV^2$)', fontsize = 12)
    times = [2.9, 3.4, 6.3, 6.8]
    if typ=='naris':
        for time in times:
            py.axvline(time, color='grey', ls='--', lw=1)    
        py.text(2.6, 160, 'naris block', color='black', fontsize=15)
        py.text(6, 160, 'naris block', color='black', fontsize=15)
    else:
        py.axvline(1.45, color='grey', ls='--', lw=4)
        py.text(1.45, 170, 'KX injection', color='black', fontsize=15)
        py.arrow(1.45, 165, 0, -10, length_includes_head=True, clip_on = False,
                 head_width=0.1, head_length=4)
    # py.axvline(105, color='red', ls='--', lw=2)
    ax1.spines['right'].set_visible(False)
    ax1.spines['top'].set_visible(False)
    py.xlabel('Time (min)')
    py.ylabel('Frequency (Hz)')
    
    cax2 = make_axes_locatable(ax1).append_axes("right", size="5%", pad=0)
    cbar = py.colorbar(im, cax = cax2)#, format=mpl.ticker.FuncFormatter(fmt))
    cbar.ax.set_title('$mV^2$', fontsize = 12)
    cbar.ax.tick_params(labelsize=12)
コード例 #10
0
def triangle_vector_space(S,T,r, steps = 21):
	"""
	This draws the phase space in term of the triangular description of phase space, given a game
	specified by S, T and r. Steps defines the number ofdecrete steps to take in each axis.
	
	Note
	====
	This was a mostly experimental idea, it is not currently in use

	"""
	##Initialise a population at a certain point, with small frequencies of mutants around it

	M = GP_evo3(S,T,r=r, steps = steps)

	pl.figure()
	pl.plot( [0,.5],[0,1], color = 'black', linewidth = 1 )
	pl.plot( [0.5,1],[1,0], color = 'black', linewidth = 1 )
	xa_s = np.linspace(0,1,101)
	pl.plot( xa_s, map(M.phi_R,xa_s), '--', color = 'black', linewidth = 2.5 )
	pl.xlabel( '$x_A$', fontsize = 30 )
	pl.ylabel( '$\\varphi$', fontsize = 30 )
	for i in xrange(steps):
		for j in xrange(steps):

			arrow = delta_x(i,j,M)
			#print arrow
			pl.arrow( *arrow )

	pl.show()
コード例 #11
0
ファイル: sift.py プロジェクト: corn-eliu/CI-PhD-iPy
def plot_match_displacement(im1, locs1, locs2, matchscores, numMatches=-1):
    """ show a figure with lines where feats in im1 moved to in im2
        input: im1 (image as array), locs1,locs2 (location of features), 
        matchscores (as output from 'match'), numMatches (number of matches to plot) """

    if numMatches == -1:
        numMatches = len(matchscores)

    pylab.gray()
    pylab.imshow(im1)

    cols1 = im1.shape[1]
    for i in range(numMatches):
        if matchscores[i] > 0:
            pylab.arrow(locs1[i, 1],
                        locs1[i, 0],
                        locs2[int(matchscores[i]), 1] - locs1[i, 1],
                        locs2[int(matchscores[i]), 0] - locs1[i, 0],
                        head_width=1.0,
                        head_length=2.0,
                        linewidth=0.5,
                        fc='r',
                        ec='r')
    pylab.axis('off')
    pylab.show()
コード例 #12
0
ファイル: muscle_model.py プロジェクト: psilentp/planotaxis
    def plot(self,plot_frame,**kwargs):
        import pylab as plb
        default_args = {'draw_frame':True,
                        'frame_head_width':20,
                        'contour_kwargs':{'edgecolor': 'none', 
                                          'linewidth': 0.0, 
                                          'facecolor': 'none'}}
        from pylab import plot,arrow
        lines = self.model.coords_from_frame(plot_frame)
        self.curves = list()
        #plot_args = kwargs.pop('plot_args',default_args)
        for line_key in lines.keys():
            try:
                element_args = kwargs['contour_kwargs'][line_key]
            except KeyError:
                
                element_args = default_args['contour_kwargs']
            line = lines[line_key]
            from matplotlib.patches import Polygon
            poly = Polygon(zip(line[0,:],line[1,:]),**element_args)
            #plb.plot([1,2,3,4])
            plb.gca().add_patch(poly,)

        if 'draw_frame' in kwargs.keys():
            if kwargs['draw_frame']:
                frame_args = dict()
                p = plot_frame['p']
                a1 = plot_frame['a1']
                a2 = plot_frame['a2']
                frame_args['color'] = 'g'
                frame_args['head_width'] = kwargs['frame_head_width']
                arrow(p[0],p[1],a1[0],a1[1],**frame_args)
                frame_args['color'] = 'b'
                frame_args['head_width'] = kwargs['frame_head_width']
                arrow(p[0],p[1],a2[0],a2[1],**frame_args)
コード例 #13
0
ファイル: pp.py プロジェクト: remosu/jobjob
def plot_ch():
    for job in jobs_orig:
        print "plane of", job.path
        pylab.clf()
        x_center = int((job.position(0)[0] + job.position(1)[0])/2)
        x_final = 50 + x_center
        #plane = np.concatenate((job.plane(y=50)[:, x_final:], 
        #                        job.plane(y=50)[:, :x_final]), axis=1)
        plane = job.plane(y=50)
        myplane = plane[plane < 0.0]
        p0 = myplane.min()
        p12 = np.median(myplane)
        p14 = np.median(myplane[myplane<p12])
        p34 = np.median(myplane[myplane>p12])
        p1 = myplane.max()
        contour_values = (p0, p14, p12, p34, p1)
        pylab.title(r'$u=%.4f,\  D=%.4f,\ Q=%i$ ' %
                ((job.u_x**2+job.u_y**2)**0.5, job.D_minus, job.ch_objects))
        car = pylab.imshow(plane, vmin=-0.001, vmax=0.0, 
                           interpolation='nearest')
        pylab.contour(plane, contour_values, linestyles='dashed', 
                                             colors='white')
        print job.u_x, job.u_y
        pylab.grid(True)
        pylab.colorbar(car)
        pylab.arrow(1, 1, 2*job.u_x/(job.u_x if job.u_x else 1.0), 2*job.u_y/(job.u_y if job.u_y else 1.0), width=0.5)
        #imgfilename = 'plane_r20-y50-u_x%.4fD%.4fch%03i.png' % \
        #              (job.u_x, job.D_minus, job.ch_objects)
        imgfilename = 'plane_%s.png' % job.job_id
        pylab.savefig(imgfilename)
コード例 #14
0
	def add_point(event):
		x, y = event.xdata, event.ydata
		points.append((x, y))
		pylab.cla()
		pylab.scatter(*zip(*points))
		pylab.xlim(-10, 10)
		pylab.ylim(-10, 10)

		pylab.draw()
		if len(points) < 3: return

		c, r = three_point_circle(*points)
		cir = pylab.Circle(c, r)
		pylab.gca().add_patch(cir)

		for p in points:
			angle = angle_at_point(c, p)
			if angle < 0:
				angle += 2*np.pi
			if angle >= np.pi:
				angle = angle - np.pi
			print np.degrees(angle)
			dx, dy = np.array((np.cos(angle), np.sin(angle)))
			pylab.text(p[0], p[1], "%.2f"%np.degrees(angle))
			pylab.arrow(p[0], p[1], dx, dy)
		pylab.show()
コード例 #15
0
 def arc(xx, yy, index):
     A = array([xx[0], yy[0]])
     B = array([xx[1], yy[1]])
     plot(A[0], A[1], "ko")
     plot(B[0], B[1], "ko")
     AB = B - A
     AB_len = sqrt(sum(AB**2))
     AB = AB / AB_len
     pAB = array([AB[1], -AB[0]])
     AB_mid = (A + B) / 2.
     if index == 1:
         R = AB_mid + pAB * AB_len / 1.5
     else:
         R = AB_mid + pAB * AB_len / 4.
     r = sqrt(sum((A - R)**2))
     P_arrow = R - pAB * r
     # Draw the arc from A to B centered at R
     phi1 = atan2((A - R)[1], (A - R)[0])
     phi2 = atan2((B - R)[1], (B - R)[0])
     n = 100  # number of divisions
     phi = linspace(phi1, phi2, n)
     xx = r * cos(phi) + R[0]
     yy = r * sin(phi) + R[1]
     plot(xx, yy, "k-", lw=2)
     x, x2 = xx[n / 2 - 1:n / 2 + 1]
     y, y2 = yy[n / 2 - 1:n / 2 + 1]
     dx = x2 - x
     dy = y2 - y
     arrow(x, y, dx / 2, dy / 2, fc="black", head_width=0.05)
コード例 #16
0
ファイル: regression.py プロジェクト: nfoti/GPy
def multiple_optima(gene_number=937, resolution=80, model_restarts=10, seed=10000, optim_iters=300):
    """Show an example of a multimodal error surface for Gaussian process regression. Gene 939 has bimodal behaviour where the noisey mode is higher."""

    # Contour over a range of length scales and signal/noise ratios.
    length_scales = np.linspace(0.1, 60.0, resolution)
    log_SNRs = np.linspace(-3.0, 4.0, resolution)

    data = GPy.util.datasets.della_gatta_TRP63_gene_expression(gene_number)
    # data['Y'] = data['Y'][0::2, :]
    # data['X'] = data['X'][0::2, :]

    data["Y"] = data["Y"] - np.mean(data["Y"])

    lls = GPy.examples.regression._contour_data(data, length_scales, log_SNRs, GPy.kern.rbf)
    pb.contour(length_scales, log_SNRs, np.exp(lls), 20, cmap=pb.cm.jet)
    ax = pb.gca()
    pb.xlabel("length scale")
    pb.ylabel("log_10 SNR")

    xlim = ax.get_xlim()
    ylim = ax.get_ylim()

    # Now run a few optimizations
    models = []
    optim_point_x = np.empty(2)
    optim_point_y = np.empty(2)
    np.random.seed(seed=seed)
    for i in range(0, model_restarts):
        # kern = GPy.kern.rbf(1, variance=np.random.exponential(1.), lengthscale=np.random.exponential(50.))
        kern = GPy.kern.rbf(1, variance=np.random.uniform(1e-3, 1), lengthscale=np.random.uniform(5, 50))

        m = GPy.models.GPRegression(data["X"], data["Y"], kernel=kern)
        m["noise_variance"] = np.random.uniform(1e-3, 1)
        optim_point_x[0] = m["rbf_lengthscale"]
        optim_point_y[0] = np.log10(m["rbf_variance"]) - np.log10(m["noise_variance"])

        # optimize
        m.optimize("scg", xtol=1e-6, ftol=1e-6, max_f_eval=optim_iters)

        optim_point_x[1] = m["rbf_lengthscale"]
        optim_point_y[1] = np.log10(m["rbf_variance"]) - np.log10(m["noise_variance"])

        pb.arrow(
            optim_point_x[0],
            optim_point_y[0],
            optim_point_x[1] - optim_point_x[0],
            optim_point_y[1] - optim_point_y[0],
            label=str(i),
            head_length=1,
            head_width=0.5,
            fc="k",
            ec="k",
        )
        models.append(m)

    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
    return m  # (models, lls)
コード例 #17
0
def arrows(points_from,
           points_to,
           color='k',
           width=None,
           width_ratio=0.002,
           label=None,
           label_kw={},
           margin_ratio=None,
           **kw):
    """draw arrows from each point_from to each point_to.

    - points_from, points_to: each is a seq of xy pairs.
    - color or c: arrow color(s).
    - width: arrow width(s), default to auto adjust with width_ratio.
    - width_ratio: set width to minimal_axisrange * width_ratio.
    - label=None: a list of strs to label the arrow heads.
    - label_kw: pass to pylab.text(x,y,txt,...)
    - margin_ratio: if provided as a number, canvas margins will be set to
        axisrange * margin_ratio.
    **kw: params pass to pylab.arrow(,...)
    """
    # convert and valid check of the points
    points_from = asarray(points_from, float)
    points_to = asarray(points_to, float)
    num_points = len(points_from)
    if len(points_to) != num_points:
        raise ValueError('Length of two group of points unmatched')
    if not width:  #auto adjust arrow widt
        min_range = min(asarray(xlim()).ptp(), asarray(ylim()).ptp())
        width = min_range * width_ratio
    #vectorize colors and width if necessary
    color = kw.pop('c', color)
    if isscalar(color): color = [color] * num_points
    if isscalar(width): width = [width] * num_points
    #draw each arrow
    #?? length_include_head=True will break??
    default = {'length_includes_head': False, 'alpha': 0.75}
    kw = dict(default, **kw)
    for (x0, y0), (x1, y1), w, c in zip(points_from, points_to, width, color):
        pylab.arrow(x0,
                    y0,
                    x1 - x0,
                    y1 - y0,
                    edgecolor=c,
                    facecolor=c,
                    width=w,
                    **kw)
    if label:  #label the arrow heads
        text_points(points_to, label, **label_kw)
    #hack fix of axis limits, otherwise some of the arrows will be invisible
    #not neccessary if the points were also scattered
    if margin_ratio is not None:
        x, y = concatenate((points_from, points_to)).T  #all the points
        xmargin = x.ptp() * margin_ratio
        ymargin = y.ptp() * margin_ratio
        xlim(x.min() - xmargin, x.max() + xmargin)
        ylim(y.min() - ymargin, y.max() + xmargin)
    return
コード例 #18
0
ファイル: plot.py プロジェクト: Artimi/pso
	def scatter_particles(self, state):
		for particle in state["particles"]:
			x, y = particle["x"]
			vx, vy = particle["v"]
			if particle["id"] == state["best_id"]:
				pl.scatter(x, y, c='y', s=35)
			else:
				pl.scatter(particle["x"][0], particle["x"][1], c='k')
			pl.arrow(x, y, vx, vy, shape="full", head_width=0.03, width=0.00001, alpha=0.3)
コード例 #19
0
ファイル: visualize.py プロジェクト: w470062742/mstar_public
def draw_edges(graph, arrow_width=.1, color=(.7, .7, .7)):
    """Draw the edges of a networkx graph"""
    for i in graph.edges():
        pylab.arrow(i[0][1],
                    i[0][0],
                    .5 * (i[1][1] - i[0][1]),
                    .5 * (i[1][0] - i[0][0]),
                    width=arrow_width,
                    color=color)
コード例 #20
0
    def Finish(self):
        import matplotlib
        matplotlib.use('agg')
        import pylab

        fig = pylab.figure(figsize=(10, 4))
        fig.subplots_adjust(wspace=0.3, bottom=0.15)
        ax = pylab.subplot(1, 2, 1)

        for track in self.tracks[:50]:
            l = inner.intersection(track.pos, track.dir).first
            pylab.arrow(track.pos.x,
                        track.pos.y,
                        l * track.dir.x,
                        l * track.dir.y,
                        edgecolor='k',
                        head_width=10,
                        width=1e-2)
            pylab.scatter([track.pos.x], [track.pos.y])
        ax.add_artist(
            self.cylinder_patch(outer, 'top', facecolor="None", edgecolor='r'))
        ax.add_artist(
            self.cylinder_patch(inner, 'top', facecolor="None", edgecolor='r'))

        ax.set_aspect('equal')
        ax.set_xlabel('x [m]')
        ax.set_ylabel('y [m]')
        ax.set_ylim((-1000, 1000))
        ax.set_xlim((-1000, 1000))

        ax = pylab.subplot(1, 2, 2)

        for track in self.tracks:
            if abs(track.pos.y) < 20:
                l = inner.intersection(track.pos, track.dir).first
                pylab.arrow(track.pos.x,
                            track.pos.z,
                            l * track.dir.x,
                            l * track.dir.z,
                            edgecolor='k',
                            head_width=10,
                            width=1e-2)
                pylab.scatter([track.pos.x], [track.pos.z])
        ax.add_artist(
            self.cylinder_patch(outer, 'side', facecolor="None",
                                edgecolor='r'))
        ax.add_artist(
            self.cylinder_patch(inner, 'side', facecolor="None",
                                edgecolor='r'))

        ax.set_aspect('equal')
        ax.set_xlabel('x [m]')
        ax.set_ylabel('z [m]')
        ax.set_ylim((-1000, 1000))
        ax.set_xlim((-1000, 1000))

        pylab.savefig(args.outfile)
コード例 #21
0
ファイル: steerable.py プロジェクト: tru-uof/okn-yaw-analysis
def test_optimal_angle_filter():
	image = pylab.imread(sys.argv[1])
	image = np.mean(image, axis=2)
	image = image[::-1]
	pylab.gray()

	f = AngleFilter((7, 7))

	components = f.get_component_values(image, mode='same')

	angles = np.radians(range(0, 180, 1))
	def best_angle_value(c):
		values = f.basis.response_at_angle(c, angles)
		return angles[np.argmax(values)], np.max(values)

	for y, x in np.ndindex(components.shape[:2]):
		if y%4 != 0: continue
		if x%4 != 0: continue
		maxval = f.basis.max_response_value(components[y,x])
		if maxval < 2: continue
		maxang_an = f.basis.max_response_angle(components[y,x])
		maxang, maxval = best_angle_value(components[y,x])
		pylab.scatter(x, y)
		dy = -5.0
		dx, dy = np.array((np.cos(maxang), np.sin(maxang)))*10
		#dx = np.tan(maxang_an)*dy
		#d = d/np.linalg.norm(d)*3
		pylab.arrow(x, y, dx, dy, color='blue')

		#d = np.array((-np.sin(maxang_an), -np.cos(maxang_an)))
		#d = d/np.linalg.norm(d)*3
		#pylab.arrow(x, y, d[0], d[1], color='green')

	
		#pylab.plot(x, y, '.')

	pylab.imshow(image, origin="lower")
	#pylab.xlim(0, components.shape[1])
	#pylab.ylim(components.shape[0], 0)
	pylab.show()
	return
	
	#pylab.subplot(1,2,1)
	#pylab.imshow(image)
	#pylab.subplot(1,2,2)
	filtered = np.zeros(image.shape)
	for y, x in np.ndindex(components.shape[:2]):
		maxval = f.basis.max_response_value(components[y,x])
		minval = f.basis.min_response_value(components[y,x])
		#print maxval, minval
		filtered[y,x] = maxval
		#filtered[y, x] = best_angle_value(components[y,x])
	#pylab.hist(filtered.flatten())
	pylab.imshow(filtered > 3)
	pylab.show()
コード例 #22
0
ファイル: ImgLib.py プロジェクト: slater1/650
def drawScaledEigenvectors(X,Y, eigVectors, eigVals, theColor='k'):
    """ Draw scaled eigenvectors starting at (X,Y)"""
    
    # For each eigenvector
    for col in xrange(eigVectors.shape[1]):
        
        # Draw it from (X,Y) to the eigenvector length
        # scaled by the respective eigenvalue
        pylab.arrow(X,Y,eigVectors[0,col]*eigVals[col],
                    eigVectors[1,col]*eigVals[col],
                    width=0.01, color=theColor)
コード例 #23
0
ファイル: ifu.py プロジェクト: mikekoss/JLU-python-code
def imshow_cube_image(image, header=None, compass=True, blackhole=True, 
                      cmap=None):
    """
    Call imshow() to plot a cube image. Make sure it is already 
    masked. Also pass in the header to do the compass rose calculations.
    """
    # Setup axis info (x is the 2nd axis)
    xcube = (np.arange(image.shape[1]) - m31pos[0]) * 0.05
    ycube = (np.arange(image.shape[0]) - m31pos[1]) * 0.05
    xtickLoc = py.MultipleLocator(0.4)

    if cmap is None:
        cmap = py.cm.jet

    # Plot the image.
    py.imshow(image, 
              extent=[xcube[0], xcube[-1], ycube[0], ycube[-1]],
              cmap=cmap)
    py.gca().get_xaxis().set_major_locator(xtickLoc)
    
    py.xlabel('X (arcsec)')
    py.ylabel('Y (arcsec)')

    # Get the spectrograph position angle for compass rose
    if compass is True:
        if header is None:
            pa = paSpec
        else:
            pa = header['PA_SPEC']


        # Make a compass rose
        cosSin = np.array([ math.cos(math.radians(pa)), 
                            math.sin(math.radians(pa)) ])
        arr_base = np.array([ xcube[-1]-0.5, ycube[-1]-0.6 ])
        arr_n = cosSin * 0.2
        arr_w = cosSin[::-1] * 0.2
        py.arrow(arr_base[0], arr_base[1], arr_n[0], arr_n[1],
                 edgecolor='w', facecolor='w', width=0.03, head_width=0.08)
        py.arrow(arr_base[0], arr_base[1], -arr_w[0], arr_w[1],
                 edgecolor='w', facecolor='w', width=0.03, head_width=0.08)
        py.text(arr_base[0]+arr_n[0]+0.1, arr_base[1]+arr_n[1]+0.1, 'N', 
                color='white', 
                horizontalalignment='left', verticalalignment='bottom')
        py.text(arr_base[0]-arr_w[0]-0.15, arr_base[1]+arr_w[1]+0.1, 'E', 
                color='white',
                horizontalalignment='right', verticalalignment='center')

    if blackhole is True:
        py.plot([0], [0], 'ko')


    py.xlim([-0.5, 0.6])
    py.ylim([-2.0, 1.8])
コード例 #24
0
ファイル: ifu.py プロジェクト: Nijaid/JLU-python-code
def imshow_cube_image(image, header=None, compass=True, blackhole=True, 
                      cmap=None):
    """
    Call imshow() to plot a cube image. Make sure it is already 
    masked. Also pass in the header to do the compass rose calculations.
    """
    # Setup axis info (x is the 2nd axis)
    xcube = (np.arange(image.shape[1]) - m31pos[0]) * 0.05
    ycube = (np.arange(image.shape[0]) - m31pos[1]) * 0.05
    xtickLoc = py.MultipleLocator(0.4)

    if cmap is None:
        cmap = py.cm.jet

    # Plot the image.
    py.imshow(image, 
              extent=[xcube[0], xcube[-1], ycube[0], ycube[-1]],
              cmap=cmap)
    py.gca().get_xaxis().set_major_locator(xtickLoc)
    
    py.xlabel('X (arcsec)')
    py.ylabel('Y (arcsec)')

    # Get the spectrograph position angle for compass rose
    if compass is True:
        if header is None:
            pa = paSpec
        else:
            pa = header['PA_SPEC']


        # Make a compass rose
        cosSin = np.array([ math.cos(math.radians(pa)), 
                            math.sin(math.radians(pa)) ])
        arr_base = np.array([ xcube[-1]-0.5, ycube[-1]-0.6 ])
        arr_n = cosSin * 0.2
        arr_w = cosSin[::-1] * 0.2
        py.arrow(arr_base[0], arr_base[1], arr_n[0], arr_n[1],
                 edgecolor='w', facecolor='w', width=0.03, head_width=0.08)
        py.arrow(arr_base[0], arr_base[1], -arr_w[0], arr_w[1],
                 edgecolor='w', facecolor='w', width=0.03, head_width=0.08)
        py.text(arr_base[0]+arr_n[0]+0.1, arr_base[1]+arr_n[1]+0.1, 'N', 
                color='white', 
                horizontalalignment='left', verticalalignment='bottom')
        py.text(arr_base[0]-arr_w[0]-0.15, arr_base[1]+arr_w[1]+0.1, 'E', 
                color='white',
                horizontalalignment='right', verticalalignment='center')

    if blackhole is True:
        py.plot([0], [0], 'ko')


    py.xlim([-0.5, 0.6])
    py.ylim([-2.0, 1.8])
コード例 #25
0
def arrow(start=(0, 0), vel=(0, (0, 0)), color='b'):
    if vel == (0, (0, 0)):
        xr, yr = 0.1, 0.1
    else:
        if vel[0] == 0:
            sp = 0.1
        else:
            sp = vel[0]
        x = vel[1][0]
        y = vel[1][1]
        xr = sp * x * qq(x, y)
        yr = sp * y * qq(x, y)
    pylab.arrow(start[0], start[1], xr, yr, head_width=0.05, head_length=0.1, color=color)
コード例 #26
0
ファイル: polarimetry.py プロジェクト: ptweir/flypod
def show_angle(angle,power):
    ARROW_STEP = 40
    kernel = np.ones((ARROW_STEP,ARROW_STEP))
    rowFilter = gaussian(ARROW_STEP,ARROW_STEP/5)
    colFilter = rowFilter
    
    gb180 = cmt.get_cmap('gb180')
    
    #X = np.arange(0,angle.shape(-1),ARROW_STEP)
    #Y = np.arange(0,angle.shape(-2),ARROW_STEP)

    x = np.matrix(np.arange(ARROW_STEP/2,angle.shape[-1],ARROW_STEP))
    y = np.transpose(np.matrix(np.arange(ARROW_STEP/2,angle.shape[-2],ARROW_STEP)))

    X = np.array((0*y+1)*x)
    Y = np.array(y*(0*x+1))
    
    #u = convolve2d(sin(angle),kernel,mode='same')
    #v = convolve2d(cos(angle),kernel,mode='same')
    #p = convolve2d(power,kernel,mode='same')
    
    u = sepfir2d(np.sin(angle),rowFilter,colFilter)
    v = sepfir2d(np.cos(angle),rowFilter,colFilter)
    p = sepfir2d(power,rowFilter,colFilter)
    
    U = u[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP]*p[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP]
    V = v[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP]*p[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP]
    
    #U = sin(angle[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP])*(power[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP])
    #V = cos(angle[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP])*(power[ARROW_STEP/2::ARROW_STEP,ARROW_STEP/2::ARROW_STEP])

    #X = X[(power[::ARROW_STEP,::ARROW_STEP]>.016)]
    #Y = Y[(power[::ARROW_STEP,::ARROW_STEP]>.016)]
    #U = U[(power[::ARROW_STEP,::ARROW_STEP]>.016)]
    #V = V[(power[::ARROW_STEP,::ARROW_STEP]>.016)]
    
    ua = ARROW_STEP/1.5*np.nansum(np.sin(angle)*power)/np.nansum(power)
    va = -ARROW_STEP/1.5*np.nansum(np.cos(angle)*power)/np.nansum(power)
    xc, yc = angle.shape[-1]/2, angle.shape[-2]/2
    
    pylab.imshow(angle,cmap=gb180)
    #pylab.imshow(angle,cmap='hsv')
    pylab.quiver(X,Y,U,V,pivot='middle',color='w',headwidth=1,headlength=0)
    pylab.arrow(xc,yc,ua,va,color='w',linewidth=2)
    pylab.arrow(xc,yc,-ua,-va,color='w',linewidth=2)
    ax=pylab.gca()
    ax.set_axis_off()
    pylab.show()

    A = np.arctan2(-ua,va)
    return A
コード例 #27
0
def snapshot(t, pos, vel, colors, arrow_scale=.2):
    global img
    pylab.cla()
    pylab.axis([0, 1, 0, 1])
    pylab.setp(pylab.gca(), xticks=[0, 1], yticks=[0, 1])
    for (x, y), (dx, dy), c in zip(pos, vel, colors):
        dx *= arrow_scale
        dy *= arrow_scale
        circle = pylab.Circle((x, y), radius=sigma, fc=c)
        pylab.gca().add_patch(circle)
        pylab.arrow( x, y, dx, dy, fc="k", ec="k", head_width=0.05, head_length=0.05 )
    pylab.text(.5, 1.03, 't = %.2f' % t, ha='center')
    pylab.savefig(os.path.join(output_dir, '%04i.png' % img))
    img += 1
コード例 #28
0
def snapshot(t, pos, vel, colors, arrow_scale=0.2):
    global img
    pylab.cla()
    pylab.axis([0, 1, 0, 1])
    pylab.setp(pylab.gca(), xticks=[0, 1], yticks=[0, 1])
    for (x, y), (dx, dy), c in zip(pos, vel, colors):
        dx *= arrow_scale
        dy *= arrow_scale
        circle = pylab.Circle((x, y), radius=sigma, fc=c)
        pylab.gca().add_patch(circle)
    pylab.arrow(x, y, dx, dy, fc="k", ec="k", head_width=0.05, head_length=0.05)
    pylab.text(0.5, 1.03, "t = %.2f" % t, ha="center")
    pylab.savefig(os.path.join(output_dir, "%d.png" % img))
    img += 1
コード例 #29
0
def riemann():

    
    # grid info
    xmin = 0.0
    xmax = 1.0

    nzones = 1
    ng = 0
    
    gr = gpu.grid(nzones, xmin=xmin, xmax=xmax)


    #------------------------------------------------------------------------
    # plot a domain without ghostcells
    gpu.drawGrid(gr)

    gpu.labelCenter(gr, 0, r"$i$")

    gpu.labelCellCenter(gr, 0, r"$q_i$")
    
    gpu.markCellLeftState(gr, 0, r"$q_{i-1/2,R}^{n+1/2}$", color="r")
    gpu.markCellRightState(gr, 0, r"$q_{i+1/2,L}^{n+1/2}$", color="r")
    

    pylab.arrow(gr.xc[0]-0.05*gr.dx, 0.5, -0.13*gr.dx, 0, 
                shape='full', head_width=0.075, head_length=0.05, 
                lw=1, width=0.01,
                edgecolor="none", facecolor="r",
                length_includes_head=True, zorder=100)

    pylab.arrow(gr.xc[0]+0.05*gr.dx, 0.5, 0.13*gr.dx, 0, 
                shape='full', head_width=0.075, head_length=0.05, 
                lw=1, width=0.01,
                edgecolor="none", facecolor="r",
                length_includes_head=True, zorder=100)
    

    pylab.xlim(gr.xl[0]-0.25*gr.dx,gr.xr[2*ng+nzones-1]+0.25*gr.dx)
    # pylab.ylim(-0.25, 0.75)
    pylab.axis("off")

    pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95)

    f = pylab.gcf()
    f.set_size_inches(4.0,2.5)


    pylab.savefig("states.png")
    pylab.savefig("states.eps")
コード例 #30
0
ファイル: ImgLib.py プロジェクト: slater1/650
def drawScaledEigenvectors(X, Y, eigVectors, eigVals, theColor='k'):
    """ Draw scaled eigenvectors starting at (X,Y)"""

    # For each eigenvector
    for col in xrange(eigVectors.shape[1]):

        # Draw it from (X,Y) to the eigenvector length
        # scaled by the respective eigenvalue
        pylab.arrow(X,
                    Y,
                    eigVectors[0, col] * eigVals[col],
                    eigVectors[1, col] * eigVals[col],
                    width=0.01,
                    color=theColor)
コード例 #31
0
ファイル: regression.py プロジェクト: dasabir/GPy
def multiple_optima(gene_number=937,resolution=80, model_restarts=10, seed=10000):
    """Show an example of a multimodal error surface for Gaussian process regression. Gene 939 has bimodal behaviour where the noisey mode is higher."""

    # Contour over a range of length scales and signal/noise ratios.
    length_scales = np.linspace(0.1, 60., resolution)
    log_SNRs = np.linspace(-3., 4., resolution)

    data = GPy.util.datasets.della_gatta_TRP63_gene_expression(gene_number)
    # Sub sample the data to ensure multiple optima
    #data['Y'] = data['Y'][0::2, :]
    #data['X'] = data['X'][0::2, :]

    # Remove the mean (no bias kernel to ensure signal/noise is in RBF/white)
    data['Y'] = data['Y'] - np.mean(data['Y'])

    lls = GPy.examples.regression._contour_data(data, length_scales, log_SNRs, GPy.kern.rbf)
    pb.contour(length_scales, log_SNRs, np.exp(lls), 20)
    ax = pb.gca()
    pb.xlabel('length scale')
    pb.ylabel('log_10 SNR')

    xlim = ax.get_xlim()
    ylim = ax.get_ylim()

    # Now run a few optimizations
    models = []
    optim_point_x = np.empty(2)
    optim_point_y = np.empty(2)
    np.random.seed(seed=seed)
    for i in range(0, model_restarts):
        kern = GPy.kern.rbf(1, variance=np.random.exponential(1.), lengthscale=np.random.exponential(50.)) + GPy.kern.white(1,variance=np.random.exponential(1.))

        m = GPy.models.GP_regression(data['X'],data['Y'], kernel=kern)
        optim_point_x[0] = m.get('rbf_lengthscale')
        optim_point_y[0] = np.log10(m.get('rbf_variance')) - np.log10(m.get('white_variance'));

        # optimize
        m.ensure_default_constraints()
        m.optimize(xtol=1e-6,ftol=1e-6)

        optim_point_x[1] = m.get('rbf_lengthscale')
        optim_point_y[1] = np.log10(m.get('rbf_variance')) - np.log10(m.get('white_variance'));

        pb.arrow(optim_point_x[0], optim_point_y[0], optim_point_x[1]-optim_point_x[0], optim_point_y[1]-optim_point_y[0], label=str(i), head_length=1, head_width=0.5, fc='k', ec='k')
        models.append(m)

    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
    return (models, lls)
コード例 #32
0
def snapshot(t, pos, vel, colors, arrow_scale=0.2):
    global img
    pylab.cla()
    pylab.axis([0, 1, 0, 1])
    pylab.setp(pylab.gca(), xticks=[0, 1], yticks=[0, 1])
    for (x, y), (dx, dy), c in zip(pos, vel, colors):  # putting position, velocity, and colors arrays into 3D tuple.
        dx *= arrow_scale  # rescale vel_x by multiplying w/ arrow_scale
        dy *= arrow_scale  # rescale vel_y by multiplying w/ arrow_scale
        circle = pylab.Circle((x, y), radius=sigma, fc=c)  # fc sets color of circle
        pylab.gca().add_patch(circle)
    pylab.arrow(x, y, dx, dy, fc="k", ec="k", head_width=0.05, head_length=0.05)
    pylab.text(
        0.5, 1.03, "t = %.2f" % t, ha="center"
    )  # .5 for middle of box on x-axis, 1.03 is just above box on y-axis
    pylab.savefig(os.path.join(output_dir, "%d.png" % img))
    img += 1
コード例 #33
0
def plotSystem(boat, plot_time, r, line_th, u0):
    fig.canvas.restore_region(background_main)
    # gather the X and Y location
    boat_x = boat.state[0]
    boat_y = boat.state[1]
    boat_th = boat.state[4]
    axes = [-PLOT_SIZE, PLOT_SIZE, -PLOT_SIZE, PLOT_SIZE]
    ax_main.plot([-PLOT_SIZE, PLOT_SIZE], [-PLOT_SIZE, PLOT_SIZE],
                 'x', markersize=1, markerfacecolor='white', markeredgecolor='white')
    ax_main.axis(axes)  # requires those invisible 4 corner white markers
    boat_arrow = pylab.arrow(boat_x, boat_y,0.05*np.cos(boat_th),0.05*np.sin(boat_th),
                             fc="g", ec="g", head_width=0.5, head_length=1.0)
    ax_main.draw_artist(boat_arrow)
    style = 'b-'
    if boat.plotData is not None:
        ax_main.draw_artist(ax_main.plot(boat.plotData[:, 0], boat.plotData[:, 1], style, linewidth=0.25)[0])
    ax_main.draw_artist(ax_main.plot([0, 50.*np.cos(line_th)], [0, 50.*np.sin(line_th)], 'k--', linewidth=0.25)[0])
    # rectangle coords
    left, width = 0.01, 0.95
    bottom, height = 0.0, 0.96
    right = left + width
    top = bottom + height
    time_text = ax_main.text(right, top, "time = {:.2f} s".format(plot_time),
                             horizontalalignment='right', verticalalignment='bottom',
                             transform=ax_main.transAxes, size=20)
    surge_text = ax_main.text(left, top, "u = {:.2f} m/s".format(boat.state[2]),
                             horizontalalignment='left', verticalalignment='bottom',
                             transform=ax_main.transAxes, size=20)
    location_text = ax_main.text((left+right)/2., top, "r = {:.2f}, th = {:.2f}, u0 = {:.2f}".format(r, np.rad2deg(line_th), u0),
                             horizontalalignment='center', verticalalignment='bottom',
                             transform=ax_main.transAxes, size=20)
    ax_main.draw_artist(time_text)
    ax_main.draw_artist(surge_text)
    ax_main.draw_artist(location_text)
    fig.canvas.blit(ax_main.bbox)
コード例 #34
0
 def snapshot(self, title, pos, vel, sphere_ind, img_name):
     pylab.subplots_adjust(left=0.10, right=0.90, top=0.90, bottom=0.10)
     pylab.gcf().set_size_inches(6, 6)
     pylab.cla()
     pylab.axis([0, 1, 0, 1])
     pylab.setp(pylab.gca(), xticks=[0, 1], yticks=[0, 1])
     for (x, y), c in zip(pos, self.colors):
         circle = pylab.Circle((x, y), radius=self.sigma, fc=c)
         pylab.gca().add_patch(circle)
     (dx, dy) = vel
     dx *= self.arrow_scale
     dy *= self.arrow_scale
     pylab.arrow(pos[sphere_ind][0], pos[sphere_ind][1], dx, dy, fc="k", ec="k",
                 head_width=0.1*np.linalg.norm(vel), head_length=0.1*np.linalg.norm(vel))
     pylab.text(.5, 1.03, title, ha='center')
     pylab.savefig(os.path.join(self.output_dir, img_name+".png"))
コード例 #35
0
ファイル: generic.py プロジェクト: QuTech-Delft/qtt
def showCoulombDirection(ptx, ww, im=None, dd=None, fig=100):
    """ Show direction of Coulomb peak in an image """
    if dd is None:
        pp = ptx
        ww = 10 * ww
        sigma = 5
    else:
        ptx = ptx.reshape((1, 2))
        ww = ww.reshape((1, 2))
        tr = qtt.data.image_transform(dd)

        pp = tr.pixel2scan(ptx.T).T

        pp2 = tr.pixel2scan((ptx + ww).T).T
        ww = (pp2 - pp).flatten()
        ww = 40 * ww / np.linalg.norm(ww)
        sigma = 5 * 3

    if fig is not None:
        if im is not None:
            plt.figure(fig)
            plt.clf()
            if dd is None:
                plt.imshow(im, interpolation='nearest')
            else:
                show2Dimage(im, dd, fig=fig)
    if fig is not None:
        plt.figure(fig)
        hh = pylab.arrow(pp[0, 0], pp[0, 1], ww[0], ww[
            1], linewidth=4, fc="k", ec="k", head_width=sigma / 2, head_length=sigma / 2)
        hh.set_alpha(0.8)

        plt.axis('image')
コード例 #36
0
 def plot_F(self, scale=1):
     for i, (X, dx, dy) in enumerate(zip(self.X, self.D['x'], self.D['y'])):
         j = i * self.ndof
         if self.frame == '1D':
             F = [0, self.Fo[j]]
         else:
             F = [self.Fo[j], self.Fo[j + 1]]
         nF = np.linalg.norm(F)
         if nF != 0:
             pl.arrow(X[0] + self.scale * dx,
                      X[1] + self.scale * dy,
                      scale * F[0],
                      scale * F[1],
                      head_width=scale * 0.2 * nF,
                      head_length=scale * 0.3 * nF,
                      color=color[1])
コード例 #37
0
def arrows(
    points_from, points_to, color="k", width=None, width_ratio=0.002, label=None, label_kw={}, margin_ratio=None, **kw
):
    """draw arrows from each point_from to each point_to.

    - points_from, points_to: each is a seq of xy pairs.
    - color or c: arrow color(s).
    - width: arrow width(s), default to auto adjust with width_ratio.
    - width_ratio: set width to minimal_axisrange * width_ratio.
    - label=None: a list of strs to label the arrow heads.
    - label_kw: pass to pylab.text(x,y,txt,...)
    - margin_ratio: if provided as a number, canvas margins will be set to
        axisrange * margin_ratio.
    **kw: params pass to pylab.arrow(,...)
    """
    # convert and valid check of the points
    points_from = asarray(points_from, float)
    points_to = asarray(points_to, float)
    num_points = len(points_from)
    if len(points_to) != num_points:
        raise ValueError("Length of two group of points unmatched")
    if not width:  # auto adjust arrow widt
        min_range = min(asarray(xlim()).ptp(), asarray(ylim()).ptp())
        width = min_range * width_ratio
    # vectorize colors and width if necessary
    color = kw.pop("c", color)
    if isscalar(color):
        color = [color] * num_points
    if isscalar(width):
        width = [width] * num_points
    # draw each arrow
    # ?? length_include_head=True will break??
    default = {"length_includes_head": False, "alpha": 0.75}
    kw = dict(default, **kw)
    for (x0, y0), (x1, y1), w, c in zip(points_from, points_to, width, color):
        pylab.arrow(x0, y0, x1 - x0, y1 - y0, edgecolor=c, facecolor=c, width=w, **kw)
    if label:  # label the arrow heads
        text_points(points_to, label, **label_kw)
    # hack fix of axis limits, otherwise some of the arrows will be invisible
    # not neccessary if the points were also scattered
    if margin_ratio is not None:
        x, y = concatenate((points_from, points_to)).T  # all the points
        xmargin = x.ptp() * margin_ratio
        ymargin = y.ptp() * margin_ratio
        xlim(x.min() - xmargin, x.max() + xmargin)
        ylim(y.min() - ymargin, y.max() + xmargin)
    return
コード例 #38
0
def plot_seeing_vs_ao(tint=1200, spec_res=100):
    ap_rad_see = 0.4
    ap_rad_rao = 0.15
    
    in_file_root = '{0:s}/roboAO_sensitivity_t{1:d}_R{2:d}'.format(work_dir, tint, spec_res)

    in_file_see = '{0:s}_ap{1:0.3f}_seeing'.format(in_file_root, ap_rad_see)
    in_file_rao = '{0:s}_ap{1:0.3f}'.format(in_file_root, ap_rad_rao)

    avg_tab_rao = Table.read(in_file_rao + '_avg_tab.fits')
    avg_tab_see = Table.read(in_file_see + '_avg_tab.fits')
    
    # Calculate the band-integrated SNR for each magnitude bin and filter.
    mag_rao = avg_tab_rao['mag']
    mag_see = avg_tab_see['mag']

    hdr1 = '# {0:3s}  {1:15s}   {2:15s}   {3:15s}'
    hdr2 = '# {0:3s}  {1:7s} {2:7s}   {3:7s} {4:7s}   {5:7s} {6:7s}'
    print hdr1.format('Mag', 'Y SNR (summed)', 'J SNR (summed)', 'H SNR (summed)')
    print hdr2.format('', 'Robo-AO', 'Seeing', 'Robo-AO', 'Seeing', 'Robo-AO', 'Seeing')
    print hdr2.format('---', '-------', '-------', '-------', '-------', '-------', '-------')

    for mm in range(len(mag_rao)):
        fmt = '  {0:3d}  {1:7.1f} {2:7.1f}   {3:7.1f} {4:7.1f}   {5:7.1f} {6:7.1f}'
        print fmt.format(mag_rao[mm], 
                         avg_tab_rao['snr_sum_y'][mm], avg_tab_see['snr_sum_y'][mm],
                         avg_tab_rao['snr_sum_j'][mm], avg_tab_see['snr_sum_j'][mm],
                         avg_tab_rao['snr_sum_h'][mm], avg_tab_see['snr_sum_h'][mm])
        
    py.clf()
    py.semilogy(avg_tab_rao['mag'], avg_tab_rao['snr_sum_j'], label='UH Robo-AO', 
                linewidth=2)
    py.semilogy(avg_tab_rao['mag'], avg_tab_see['snr_sum_j'], label='Seeing-Limited',
                linewidth=2)
    py.xlabel('J-band Magnitude')
    py.ylabel('Signal-to-Noise in 1200 sec')
    py.xlim(13, 21)
    py.ylim(1, 1e4)
    py.arrow(16.1, 30, 4.05, 0, color='red', width=2, head_width=10, head_length=0.5, 
             length_includes_head=True, fc='red', ec='red')
    py.text(17.3, 11, '250x More\nSupernovae Ia', color='red', 
            horizontalalignment='left', fontweight='bold', fontsize=16)
    py.legend()
    # py.title('Tint={0:d} s, R={1:d}'.format(tint, spec_res))
    py.savefig(in_file_rao + '_proposal.png')

    return
コード例 #39
0
ファイル: sift.py プロジェクト: corn-eliu/CI-PhD-iPy
def plot_match_displacement(im1,locs1,locs2,matchscores, numMatches=-1):
    """ show a figure with lines where feats in im1 moved to in im2
        input: im1 (image as array), locs1,locs2 (location of features), 
        matchscores (as output from 'match'), numMatches (number of matches to plot) """

    if numMatches == -1 :
        numMatches = len(matchscores)

    pylab.gray()
    pylab.imshow(im1)
    
    cols1 = im1.shape[1]
    for i in range(numMatches):
        if matchscores[i] > 0:
            pylab.arrow(locs1[i,1], locs1[i,0], locs2[int(matchscores[i]),1]-locs1[i,1], locs2[int(matchscores[i]),0]-locs1[i,0], head_width=1.0, head_length=2.0, linewidth=0.5, fc='r', ec='r')
    pylab.axis('off')
    pylab.show()
コード例 #40
0
def showPerc(perc):
    CalSAT = ThreeFourSAT + FourFiveSAT
    h3 = sorted(CalSAT)
    fit3 = stats.norm.pdf(h3, avg(CalSAT), stanDev(CalSAT))
    plt.plot(h3, fit3, '-go')
    plt.hist(h3, density=True)
    plt.title("California Math SAT Averages 2013-2015")

    #arrow from the right
    score = calScore(perc, CalSAT)
    minusScore = score - 1020
    if perc > 0.5:
        plt.arrow(1020,
                  0,
                  minusScore,
                  0.01 - perc / 100 + 0.0005,
                  width=0.0006,
                  head_width=0.0012,
                  head_length=30,
                  length_includes_head=True,
                  color="blue")

    #This arrow was able to start from the right if the percentile was greater than 0.5. The parameter values
    #were experimented with for quite a bit, and it took perfecting to actually get the arrow to point exactly at
    #at the desired datapoint. "0.01 - perc/100 + 0.0005" represents the change in y from (1020, 0) on the graph.
    #The logic behind this is that 0.01 is the max height, and instead of increasing in height, the curve actually
    #decreases after the local max, as it's concave down. So it decreases in increments of the percentile as it moves
    #to the right. A similar process is completed upon approaching the maximum point, but it involves increasing the
    #change in y in increments of percentile instead.

    #arrow from the left
    else:
        plt.arrow(0,
                  0,
                  calScore(perc, CalSAT),
                  perc / 100 + 0.0013,
                  width=0.0006,
                  head_width=0.0012,
                  head_length=30,
                  length_includes_head=True,
                  color="red")

    SATScore = calScore(perc, CalSAT)
    print("SAT Math Score: {}".format(SATScore))

    plt.show()
コード例 #41
0
    def addArrows(aDict, aColor):
        for i in aDict:
            x, y = arrowDict[i]
            newx, newy = arrowDict[aDict[i]]
            dx, dy = newx - x, newy - y

            pylab.arrow(
                x,
                y,
                dx,
                dy,
                head_length=0.3,
                head_width=0.20,
                color=aColor,
                linestyle="dotted",
                length_includes_head=True,
            )
コード例 #42
0
def plot_graph(classA, classB, wvector, title, b=2):
    #fig, axis = plt.sublplot(nrows=2, ncols=2)
    yA = []
    xA = []
    yB = []
    xB = []
    for instA, instB in zip(classA, classB):
        xA.append(instA[0])
        yA.append(instA[1])
        xB.append(instB[0])
        yB.append(instB[1])
    #ax = axis[0, 0]
    plt.plot(xA, yA, 'ro')
    plt.plot(xB, yB, 'bo')
    #plt.plot([0, 3], [0, 2], linestyle="dashed", marker="o", color="green")
    # plot weight vector
    xW = (0, wvector[1])
    yW = (0, wvector[2])
    # print wvector[1], wvector[2]
    # plt.plot(xW, yW, label="weight", linestyle="-", marker="o", color="green")
    pl.arrow(0,
             0,
             wvector[1][0],
             wvector[2][0],
             fc="g",
             ec="g",
             head_width=0.15,
             head_length=0.2)

    # plot hyperplane
    #c, a, b = w[0][1], w[1][1], w[2][1]
    # find y which is X2, assuming X1=0, 10
    y1 = -float((wvector[0][0])) / wvector[2][0]
    y2 = -float((wvector[1][0] * 10 + wvector[0][0])) / wvector[2][0]

    y1r = float((b - wvector[0][0])) / wvector[2][0]
    y2r = float(((b - wvector[0][0]) - wvector[1][0] * 10)) / wvector[2][0]

    # plt.plot((0, 10), (y1r, y2r), "c--") # Wtranspose.Y = b
    plt.plot((0, 10), (y1, y2), "m--")

    plt.axis([0, 15, 0, 15])
    plt.title(title)
    plt.draw()
    plt.show()
コード例 #43
0
def snapshot(t, pos, vel, colors, X, Y, arrow_scale=.2):
    """ La routine qui s'occupe des tracés graphiques."""
    global img
    nbmax = 20
    pylab.subplots_adjust(left=0.10, right=0.90, top=0.90, bottom=0.10)
    pylab.gcf().set_size_inches(12, 12 * 2 / 3)
    # Le premier sous-plot: carré de 2x2
    ax1 = pylab.subplot2grid((2, 3), (0, 0), colspan=2, rowspan=2)
    pylab.setp(pylab.gca(), xticks=[0, 1], yticks=[0, 1])
    pylab.plot(X, Y, 'k')  # On y met le trajet de la dernière particule
    pylab.xlim((0, 1))  # On doit astreindre les côtés horizontaux
    pylab.ylim((0, 1))  # et verticaux
    # Boucle sur les points pour rajouter les cercles colorés
    for (x, y), c in zip(pos, colors):
        circle = pylab.Circle((x, y), radius=sigma, fc=c)
        pylab.gca().add_patch(circle)
    dx, dy = vel[
        -1] * arrow_scale  # La dernière particule a droit à son vecteur vitesse
    pylab.arrow(x,
                y,
                dx,
                dy,
                fc="k",
                ec="k",
                head_width=0.05,
                head_length=0.05)
    pylab.text(.5, 1.03, 't = %.2f' % t, ha='center')
    # Second sous-plot: histogramme de la projection suivant x des vitesses
    ax2 = pylab.subplot2grid((2, 3), (0, 2), colspan=1, rowspan=1)
    r = (-2, 2)  # Intervalle de vitesses regardé
    pylab.hist(vel[:, 0], bins=20, range=r)
    pylab.xlim(r)
    pylab.ylim((0, nbmax))
    pylab.ylabel("Nombre de particules")
    pylab.xlabel("$v_x$")
    # Troisième sous-plot: histogramme de la norme des vitesses
    ax3 = pylab.subplot2grid((2, 3), (1, 2), colspan=1, rowspan=1)
    r = (0, 2)  # Intervalle de vitesses regardé
    pylab.hist(np.sqrt(np.sum(vel**2, axis=1)), bins=20, range=r)
    pylab.xlim(r)
    pylab.ylim((0, nbmax))
    pylab.ylabel("Nombre de particules")
    pylab.xlabel("$||\\vec{v}||$")
    pylab.savefig(os.path.join(output_dir, '{:04d}.png'.format(img)))
    img += 1
コード例 #44
0
def addArrows(k,arrowDeltaX,arrowDeltaY,direction,arrowScale=False):
	desiredSize = 0.5 * k.zoomedBoxHalfSize
	currentSize = math.sqrt(arrowDeltaX**2+arrowDeltaY**2)
	if arrowScale == False:
		arrowScale = desiredSize / currentSize
	
	originX1=k.zoomedBoxHalfSize+k.arrowOffsetX
	originY1=k.zoomedBoxHalfSize+k.arrowOffsetY
	deltaX1 =arrowDeltaX*arrowScale
	deltaY1 =arrowDeltaY*arrowScale
	
	labelX1 = k.zoomedBoxHalfSize+k.arrowOffsetX+arrowDeltaX*arrowScale*k.labelLengthScale - 10*k.lengthScale
	labelY1 = k.zoomedBoxHalfSize+k.arrowOffsetY+arrowDeltaY*arrowScale*k.labelLengthScale - 10*k.lengthScale
	
#	print "arrowScale", arrowScale, "origin", originX1+k.extraX, originY1+k.extraY, "delta", deltaX1, deltaY1
		
	pylab.arrow(originX1+k.extraX, originY1+k.extraY, deltaX1, deltaY1, color="white",head_width=8*k.lengthScale,head_length=8*k.lengthScale)
	pylab.text(labelX1+k.extraX,labelY1+k.extraY,direction,color="white")
コード例 #45
0
def plot_path(path):

    pylab.clf()
    pylab.xlim(-2, max_size + 1)
    pylab.ylim(-2, max_size + 1)
    pylab.axis('off')

    # Start.
    pylab.annotate('start', xy=(0, 0), xytext=(-1, -1), size=10, bbox=dict(boxstyle="round4,pad=.5", fc="0.8"), arrowprops=dict(arrowstyle="->"))
    pylab.annotate('stop', xy=(max_size-1, max_size-1), xytext=(max_size, max_size), size=10, bbox=dict(boxstyle="round4,pad=.5", fc="0.8"), arrowprops=dict(arrowstyle="->"))

    # Show the food.
    for f in food:
        pylab.annotate('food', xy=f, size=5, bbox=dict(boxstyle="round4,pad=.5", fc="0.8"), ha='center')
    
    
    for i in range(len(path) - 1):
        pylab.arrow(path[i][0], path[i][1], path[i+1][0] - path[i][0], path[i+1][1] - path[i][1])
コード例 #46
0
def plot_displacements(tab):
    t = Table(np.loadtxt(tab), 
            names=('THING_ID', 'PLATE', 'MJD', 
                   'FIBERID', 'RA', 'DEC', 'Z', 'RA0', 'DEC0'),
            dtype=(int, int, int, int, float, float, float, float, float))
   
    rand_ind = np.random.choice(np.arange(len(t)), \
                    replace=False, size=2000)

    P.figure()
    for i in rand_ind:
        x = t['RA0'][i]
        y = t['DEC0'][i]
        dx = t['RA'][i]-x
        dy = t['DEC'][i]-y 
        P.arrow(x, y, dx, dy, color='k', width=0.0003)
    P.xlim(t['RA'][rand_ind].min(), t['RA'][rand_ind].max())
    P.ylim(t['DEC'][rand_ind].min(), t['DEC'][rand_ind].max())
    P.show()
コード例 #47
0
def plot(A, title=""):
    color = ['g', 'c', 'm', 'y']
    label = ['SSP', 'SSPM', 'MR']
    x1 = [i[0] for i in w1]
    y1 = [i[1] for i in w1]
    x2 = [i[0] for i in w2]
    y2 = [i[1] for i in w2]
    plt.plot(x1, y1, 'ro')
    plt.plot(x2, y2, 'bo')
    for i, a in enumerate(A):
        x = [-3, 10]
        y = [-1. * (a[0] + a[1] * j) / a[2] for j in x]
        plt.plot(x, y, color[i] + '--', label=label[i])
        # Plot Vector
        pl.arrow(0, 0, a[1], a[2], fc=color[i], ec=color[i],
                 head_width=0.15, head_length=0.2)
    plt.legend(loc=4, borderaxespad=0.)
    plt.title(title)
    # plt.axis([-5, 15, -5, 15])
    plt.show()
コード例 #48
0
def snapshot(t, pos, vel, colors, arrow_scale=.2):
    global img
    ax = pylab.cla()
    pylab.axis([0, 1, 0, 1], aspect='equal')
    pylab.setp(pylab.gca(), xticks=[0, 1], yticks=[0, 1])
    for (x, y), (dx, dy), c in zip(pos, vel, colors):
        dx *= arrow_scale
        dy *= arrow_scale
        circle = pylab.Circle((x, y), radius=sigma, fc=c)
        pylab.gca().add_patch(circle)
        pylab.arrow(x, y, dx, dy, fc="k", ec="k",
                    head_width=0.05, head_length=0.05)
        pylab.text(.5, 1.03, 't = %.2f' % t, ha='center')
    img_str = str(img)

    pylab.show()
    
    pylab.pause(0.1)
    pylab.clf()
    img += 1
コード例 #49
0
def fig_power(po, pos, sig_loc, start=400, stop = 405, Title = '', asteriks=[0,0]):
    global freq
    from mpl_toolkits.axes_grid.inset_locator import inset_axes
    ax1 = py.subplot(gs[pos[2]:pos[3], pos[0]:pos[1]])
    py.title(Title, fontsize=15)
    set_axis(ax1, -0.1, 1.05, letter= po)
    labels= ['Olf. bulb', 'Thalamus', 'Visual ctrx']
    for i in range(2,-1,-1):
        sig_loc[i] = notch_filter(sig_loc[i], Fs, np.arange(50, 450, 50))
        freq, sp = welch(sig_loc[i], Fs, nperseg = 1*Fs)
        ax1.plot(freq, sp, lw=4, label=labels[i])
        # ax1.text(asteriks[0], asteriks[1] , '*', fontsize=20)
        py.arrow(asteriks[0], asteriks[1], 0, -12, length_includes_head=True, clip_on = False,
                 head_width=2, head_length=4)
    # py.ylim(.1, 10e4)
    py.ylim(0,220)
    py.xlim(0, 155)
    py.ylabel('power $mV^2$')
    ax1.spines['right'].set_visible(False)
    ax1.spines['top'].set_visible(False)
    py.xlabel('Frequency (Hz)')
    if po!='B1': 
        inset_axes = inset_axes(ax1, width="23%", height=1.0, loc=1)
        for n in range(3,sig_loc.shape[0]):
            sig_loc[n] = notch_filter(sig_loc[n], Fs, np.arange(50, 450, 50))
            freq, sp = welch(sig_loc[n], Fs, nperseg = 1*Fs)
            py.plot(freq, sp, lw=2, color='green')
        py.ylim(0,220)
        py.xlim(0,155)
        py.xticks(fontsize=11)
        py.yticks(fontsize=11)
    # py.ylim(.1, 10e4)
    # py.yscale('log')
    # py.text(200,100, 'Olf. bulb propofol')
        py.xlabel('Frequency (Hz)')
    if po=='B1': 
        ket = mpatches.Patch(color='green', label='Olf. bulb')
        kx = mpatches.Patch(color='orange', label='Thalamus LGN')
        gam = mpatches.Patch(color='blue', label='Visual cortex')
        ax1.legend(loc='lower right', bbox_to_anchor=(1.2, .7), handles=[ket,kx,gam],
                   ncol=1, frameon = True, fontsize = 15)
コード例 #50
0
ファイル: visualize.py プロジェクト: w470062742/mstar_public
def draw_fragment(moves, width=.1):
    counter = 0
    for fragment in moves:
        counter += 1
        pylab.hold(True)

        def get_color(i):
            while i >= len(COLORS):
                i -= len(COLORS)
            return COLORS[i]

        coord1 = None
        if fragment['standard_1']:
            coord1 = fragment['coord_1']
        else:
            coord1 = list(fragment['coord_1'][0])
        coord2 = None
        if fragment['standard_2']:
            coord2 = fragment['coord_2']
        else:
            coord2 = list(fragment['coord_2'][1])
            coord2.extend(fragment['coord_2'][0][len(coord2):])
        for i in range(len(fragment['rob_id'])):
            color = list(get_color(fragment['rob_id'][i]))
            if fragment['skipped']:
                pylab.plot([coord2[i][0]], [coord2[i][1]],
                           marker='o',
                           color=color)
                continue
            try:
                pylab.arrow(coord1[i][0],
                            coord1[i][1],
                            coord2[i][0] - coord1[i][0],
                            coord2[i][1] - coord1[i][1],
                            length_includes_head=True,
                            width=width,
                            head_width=width * 3,
                            color=color)
            except AssertionError:
                pass
    pylab.hold(False)
コード例 #51
0
ファイル: life.py プロジェクト: thomasorb/learning-machines
 def show(self):
     fig = pl.figure(figsize=(10,10))
     coords = list()
     for ii in range(len(self.layers)):
         for ij in range(len(self.layers[ii].cells)):
             self.layers[ii].cells[ij].coords = (ii, ij)
     
     for ilayer in self.layers:
         for icell in ilayer.cells:
             pl.scatter(icell.coords[0], icell.coords[1], c='black')
             
             for i in range(len(icell.children)):
                 pl.arrow(icell.coords[0], icell.coords[1], 
                          icell.children[i].coords[0] - icell.coords[0],  
                          icell.children[i].coords[1] - icell.coords[1], 
                          ec=matplotlib.cm.RdYlBu_r((icell.weights[i] + 1.)/2.))
             
                 
             pl.text(icell.coords[0] - 0.2, icell.coords[1] + 0.2, ' '.join(['{:.2f}'.format(w) for w in icell.weights]), c='red')
             #pl.text(icell.coords[0] - 0.05, icell.coords[1] + 0.2, '{:.2f}'.format(icell.get()), c='green')
     fig.colorbar(matplotlib.cm.ScalarMappable(norm=matplotlib.colors.Normalize(vmin=-1, vmax=1), cmap='RdYlBu_r'))
コード例 #52
0
def plot_cdf_from_file(filename):
    """Open file, store cdf to .pdf and .png"""

    import numpy as np
    import matplotlib.pyplot as plt
    import pylab as P
    data = np.genfromtxt(filename, delimiter=',')

    # SINR data is best presented in dB
    from utils import utils
    data = utils.WTodB(data)

    import cdf_plot
    label = ["Iteration %d" % i for i in np.arange(data.shape[0]) + 1]
    cdf_plot.cdf_plot(data, '-', label=label)
    #    plt.xlabel(xlabel)
    #    plt.ylabel(ylabel)
    #    plt.title(title)
    P.arrow(0, 50, 40, 0, fc="k", ec="k", head_width=3, head_length=5)
    plt.savefig(filename + '.pdf', format='pdf')
    plt.savefig(filename + '.png', format='png')
コード例 #53
0
def test_disp(disp_x,
              disp_y,
              rangex=[np.pi / 2 - 1., np.pi / 2 + 1.],
              rangey=[0.5, np.pi / 2],
              ndots=1000,
              factor=1,
              seed=1):
    ''' Test displacements by plotting a set of random points in phi, theta'''
    np.random.seed(seed)
    nside = hp.npix2nside(disp_x.size)

    phi = np.random.uniform(rangex[0], rangex[1], ndots)
    theta = np.random.uniform(rangey[0], rangey[1], ndots)

    ipix = hp.ang2pix(nside, theta, phi)
    dphi = disp_x[ipix]
    dtheta = disp_y[ipix]

    ra = phi
    dec = np.pi / 2 - theta

    dd = np.sqrt(dphi**2 + dtheta**2)
    alpha = np.arctan2(dphi, dtheta)
    ## Equation A15 from 0502469
    thetap = np.arccos(
        np.cos(dd) * np.cos(theta) -
        np.sin(dd) * np.sin(theta) * np.cos(alpha))
    phip = phi + np.arcsin(np.sin(alpha) * np.sin(dd) / np.sin(thetap))

    rap = phip
    decp = np.pi / 2 - thetap

    plt.figure()
    for t, p, t2, p2 in zip(dec, ra, decp, rap):
        plt.arrow(p,
                  t, (p2 - p) * factor, (t2 - t) * factor,
                  color='k',
                  width=0.0003)
    plt.xlim(rangex[1], rangex[0])
    plt.ylim(np.pi / 2 - rangey[1], np.pi / 2 - rangey[0])
コード例 #54
0
ファイル: align.py プロジェクト: yochananmkp/clir
    def gui_repr(self):
        """Generate a GUI to represent the sentence alignments
        """
        if __pylab_loaded__:
            fig_width = max(len(self.text_e), len(self.text_f)) + 1
            fig_height = 3
            pylab.figure(figsize=(fig_width*0.8, fig_height*0.8), facecolor='w')
            pylab.box(on=False)
            pylab.subplots_adjust(left=0, right=1, bottom=0, top=1)
            pylab.xlim(-1, fig_width - 1)
            pylab.ylim(0, fig_height)
            pylab.xticks([])
            pylab.yticks([])

            e = [0 for _ in xrange(len(self.text_e))]
            f = [0 for _ in xrange(len(self.text_f))]
            for (i, j) in self.align:
                e[i] = 1
                f[j] = 1
                # draw the middle line
                pylab.arrow(i, 2, j - i, -1, color='r')
            for i in xrange(len(e)):
                # draw e side line
                pylab.text(i, 2.5, self.text_e[i], ha = 'center', va = 'center',
                        rotation=30)
                if e[i] == 1:
                    pylab.arrow(i, 2.5, 0, -0.5, color='r', alpha=0.3, lw=2)
            for i in xrange(len(f)):
                # draw f side line
                 pylab.text(i, 0.5, self.text_f[i], ha = 'center', va = 'center',
                        rotation=30)
                 if f[i] == 1:
                    pylab.arrow(i, 0.5, 0, 0.5, color='r', alpha=0.3, lw=2)

            pylab.draw()
コード例 #55
0
def coulomb_barrier():

    ax = pylab.subplot(111)    
    
    npts = 200
    r = numpy.arange(npts, dtype=numpy.float64)/npts

    SMALL = 1.e-16

    # Coulomb potential
    C = 1/(r + SMALL)

    # interior, strong potential
    V = numpy.zeros(npts) - 2.0

    # merge the two
    U = numpy.where(C < 10.0, C, V)

    pylab.plot(r, U, 'r', linewidth=2)


    tlabels = [r"$\lambda_0$"]
    tpos = [0.1]

    # draw the axes manually
    pylab.axis("off")
    
    # y-axis
    pylab.arrow(0, 1.1*min(U), 0, 1.1*max(U) - 1.1*min(U), 
                fc='k', head_width=0.015, head_length=0.18)

    pylab.text(-0.05*max(r), 1.1*max(U), r"$U$", color="k", size=15)
    # x-axis
    pylab.arrow(0, 0, 1.05*max(r), 0, 
                fc='k', head_width=0.12, head_length=0.02)

    pylab.text(1.05*max(r), -0.025*max(U), r"$r$", color="k", size=15, verticalalignment="top")

    # draw a line representing a classical particle's energy
    E = 0.3*max(U)
    pylab.plot([0, max(r)], [E, E], 'b--')
    pylab.text(0.75*max(r), 1.05*E, "incoming proton KE", color='b',
               horizontalalignment="center")
    


    # find the x-coord of the classical turning point
    x = 1.0/E
    arrow_params = {'length_includes_head':True}

    pylab.arrow(x, 0, 0, E, fc='0.5', ec='0.5', head_width=0.015, head_length=0.25,
                **arrow_params)

    pylab.text(x, -0.025*max(U), r"$r_0$", color="0.5", size=15,horizontalalignment="center", verticalalignment="top")

    
    f = pylab.gcf()
    f.set_size_inches(6.0,6.0)

    pylab.savefig("coulomb_barrier.png")
コード例 #56
0
ファイル: force.py プロジェクト: tokasamwin/Nova
 def plot(self, scale=3):
     fs = matplotlib.rcParams['legend.fontsize']
     if not hasattr(self, 'F'):
         self.set_force(self.I)
     Fmax = np.max(np.linalg.norm(self.F, axis=1))
     index = np.append(self.index['PF']['index'], self.index['CS']['index'])
     names = np.append(self.index['PF']['name'], self.index['CS']['name'])
     for i, name in zip(index, names):
         r, z = self.pf_coil[name]['r'], self.pf_coil[name]['z']
         F = self.F[i]
         zarrow = scale * F[1] / Fmax
         #pl.arrow(r,z,scale*F[0]/Fmax,0,  # Fr
         #         linewidth=2,head_width=0.3,head_length=0.4,
         #         ec=0.4*np.ones(3),fc=0.7*np.ones(3))
         pl.arrow(
             r,
             z,
             0,
             zarrow,  # Fz
             linewidth=2,
             head_width=0.12,
             head_length=0.1,
             ec=0.2 * np.ones(3),
             fc=0.2 * np.ones(3))
         if name in self.index['PF']['name']:
             zarrow += np.sign(zarrow) * 0.5
             if abs(zarrow) < self.pf_coil[name]['dz']:
                 zarrow = np.sign(zarrow) * self.pf_coil[name]['dz']
             if zarrow > 0:
                 va = 'bottom'
             else:
                 va = 'top'
             pl.text(r,
                     z + zarrow,
                     '{:1.2f}MN'.format(F[1]),
                     ha='center',
                     va=va,
                     fontsize=1.1 * fs,
                     color=0.1 * np.ones(3),
                     backgroundcolor=0.9 * np.ones(3))
コード例 #57
0
def main():
    points = [(1,0), (0,1), (-1,0), (0,-1)]
    plot_shape(points)
    polar_points = order_points(points)
    
    # input
    in_1 = (1, 0)
    plt.plot([in_1[0]],  [in_1[1]], marker='o', markersize=10, color="y")
    in_2 = (2, 1)
    plt.plot([in_2[0]],  [in_2[1]], marker='o', markersize=10, color="b")
    p.arrow(in_1[0],  in_1[1], in_2[0] - in_1[0] - 0.15,  in_2[1] - in_1[1] - 0.15, fc="k", ec="k", head_width=0.1, head_length=0.15)
        
    # vec = Y-X
    vec = (in_2[0] - in_1[0], in_2[1] - in_1[1])
    vec_polar = cartesian_to_polar(vec)
    plt.plot([vec[0]],  [vec[1]], marker='o', markersize=10, color="g")
    p.arrow(0,0, vec[0] - 0.15, vec[1] - 0.15, fc="k", ec="k", head_width=0.1, head_length=0.15)
    plt.show()
    
    lamda=0
    # extract all the angles of vertices
    res_list = [x[1] for x in polar_points]
    for idx in range(len(res_list)) :
        if vec_polar[1] < res_list[idx] :
            A = polar_to_cartesian(polar_points[idx-1])
            B = polar_to_cartesian(polar_points[idx])
            # the crossing point
            cross = cross_point(A, B, vec)
            # this is the final lamda
            lamda = vec[0]/cross[0]
            break

    #using for testing: lamda = 2
    final_vtx=[]
    for pt in points :
        final_vtx.append((pt[0]*lamda, pt[1]*lamda))

    plot_shape(final_vtx)
    plt.show()
コード例 #58
0
    def plot(self, plot_frame, **kwargs):
        import pylab as plb
        default_args = {
            'draw_frame': True,
            'frame_head_width': 20,
            'contour_kwargs': {
                'edgecolor': 'none',
                'linewidth': 0.0,
                'facecolor': 'none'
            }
        }
        from pylab import plot, arrow
        lines = self.model.coords_from_frame(plot_frame)
        self.curves = list()
        #plot_args = kwargs.pop('plot_args',default_args)
        for line_key in lines.keys():
            try:
                element_args = kwargs['contour_kwargs'][line_key]
            except KeyError:

                element_args = default_args['contour_kwargs']
            line = lines[line_key]
            from matplotlib.patches import Polygon
            poly = Polygon(zip(line[0, :], line[1, :]), **element_args)
            #plb.plot([1,2,3,4])
            plb.gca().add_patch(poly, )

        if 'draw_frame' in kwargs.keys():
            if kwargs['draw_frame']:
                frame_args = dict()
                p = plot_frame['p']
                a1 = plot_frame['a1']
                a2 = plot_frame['a2']
                frame_args['color'] = 'g'
                frame_args['head_width'] = kwargs['frame_head_width']
                arrow(p[0], p[1], a1[0], a1[1], **frame_args)
                frame_args['color'] = 'b'
                frame_args['head_width'] = kwargs['frame_head_width']
                arrow(p[0], p[1], a2[0], a2[1], **frame_args)