コード例 #1
0
def fast_CIC_deposit(x, mi, Ngrid=N, periodic=1):
    """cloud in cell density estimator
    """
    if ((np.size(mi)) < (np.size(x))):
        m = x.copy()
        m[:] = mi
    else:
        m = mi

    dx = 1. / Ngrid
    rho = np.zeros(Ngrid)

    left = x - 0.5 * dx
    right = left + dx
    xi = np.int32(left / dx)
    frac = (1. + xi - left / dx)
    ind = pyl.where(left < 0.)
    frac[ind] = (-(left[ind] / dx))
    xi[ind] = Ngrid - 1
    xir = xi.copy() + 1
    xir[xir == Ngrid] = 0
    rho = pyl.bincount(xi, weights=frac * m, minlength=Ngrid)
    rho2 = pyl.bincount(xir, weights=(1. - frac) * m, minlength=Ngrid)

    rho += rho2

    return rho * Ngrid
コード例 #2
0
def OutToClass(outputs, targets):
    outs = []
    trgs = []
    for out, trg in zip(outputs, targets):
        # this is to have each output neruon responsible for a class
        # if False and len(out) == 3 and \
        if len(out) == 1:
          outs.append(out[0])
          trgs.append(trg[0])
          # print out[0]  
        elif len(out) == 3 and \
          array([where(x in [1, 0], True, False) for x in out]).all() and \
          bincount(out.astype('int'))[0] != 2:
            outs.append(-1)
            trgs.append(argmax(trg))
        else:
            outs.append(argmax(out))
            trgs.append(argmax(trg))
    return outs, trgs
コード例 #3
0
def OutToClass(outputs, targets):
    outs = []
    trgs = []
    for out, trg in zip(outputs, targets):
        # this is to have each output neruon responsible for a class
        # if False and len(out) == 3 and \
        if len(out) == 1:
            outs.append(out[0])
            trgs.append(trg[0])
            # print out[0]
        elif len(out) == 3 and \
          array([where(x in [1, 0], True, False) for x in out]).all() and \
          bincount(out.astype('int'))[0] != 2:
            outs.append(-1)
            trgs.append(argmax(trg))
        else:
            outs.append(argmax(out))
            trgs.append(argmax(trg))
    return outs, trgs
コード例 #4
0
	def testOutput(self):
		self.assertEqual(bincount(self.net2.ao.astype('int'))[0],
			2)
		self.assertEqual(bincount(self.net2.ao.astype('int'))[1],
			1)
コード例 #5
0
 def classify(self, x):
     d = self.X - tile(x.reshape(self.n, 1), self.N)
     dsq = sum(d*d, 0)
     neighbours = self.c[argpartition(dsq, self.k)[:self.k]]
     most_common = argmax(bincount(neighbours.astype(int)))
     return most_common
コード例 #6
0
	zspec = pylab.array(zspec)
	zphot = pylab.array(zphot)
	lmass = pylab.array(lmass)
	zlss = pylab.array(zlss)

	dzspec = (zspec - zlss) / (1 + zspec)
	dzphot = (zphot - zlss) / (1 + zphot)


	###  binning by mass
	digi_truepos = pylab.digitize(lmass[inds_truepos], lmassbins)
	digi_trueneg = pylab.digitize(lmass[inds_trueneg], lmassbins)
	digi_falsepos = pylab.digitize(lmass[inds_falsepos], lmassbins)
	digi_falseneg = pylab.digitize(lmass[inds_falseneg], lmassbins)

	bincount_truepos = pylab.bincount(digi_truepos, minlength=len(lmassbins)+1)[1:-1]
	bincount_trueneg = pylab.bincount(digi_trueneg, minlength=len(lmassbins)+1)[1:-1]
	bincount_falsepos = pylab.bincount(digi_falsepos, minlength=len(lmassbins)+1)[1:-1]
	bincount_falseneg = pylab.bincount(digi_falseneg, minlength=len(lmassbins)+1)[1:-1]

	n_truepos[i] += bincount_truepos
	n_trueneg[i] += bincount_trueneg
	n_falsepos[i] += bincount_falsepos
	n_falseneg[i] += bincount_falseneg

print 'done with +/- 1.5 sigma_zphot'




nhinlo_falsepos_tot = pylab.array([mypy.massfunc.confidence_interval(ni) for ni in n_falsepos.sum(axis=0)])
コード例 #7
0
			                       (f.cat.z_spec[f.inds_spatial] > zlo_spec) &
	    		                   (f.cat.z_spec[f.inds_spatial] < zhi_spec))

		###  LSS candidates selected by zphot
		members_zphot = pylab.find((f.cat.use[f.inds_spatial] == 1) &
			                       (f.cat.z_spec[f.inds_spatial] < 0) &
	    		                   (dr_pkpc_min[f.inds_spatial] <= 1500.) &
			                       (f.fout.z[f.inds_spatial] > zlo_phot) &
	   			                   (f.fout.z[f.inds_spatial] < zhi_phot))


		###  binning galaxies by stellar mass
		digi_mass_zspec = pylab.digitize(f.fout.lmass[f.inds_spatial][members_zspec], lmassbins)
		digi_mass_zphot = pylab.digitize(f.fout.lmass[f.inds_spatial][members_zphot], lmassbins)

		ngal_bins_zspec = pylab.bincount(digi_mass_zspec, minlength=len(lmassbins)+1)[1:-1]
		ngal_bins_zphot = pylab.bincount(digi_mass_zphot, minlength=len(lmassbins)+1)[1:-1]
		ngal_bins_zphot_corr = ngal_bins_zphot * corr_factor
		nfinal[i] += ngal_bins_zspec + ngal_bins_zphot_corr






		###################
		###  STAR-FORMING
		###################

		###  LSS members selected by zspec
		members_zspec_sf = pylab.find((f.cat.use[f.inds_spatial] == 1) &
コード例 #8
0
def GetGS(image_name, scale, roi=None, show=True, min_size=500, exclude_zones=None, flipudflag=False):

    # Load image (Rappel pour convertir couleur to rgb color.rgb2gray)
    if opencv:
        original = cv2.imread(image_name)
    else:
        original = m.imread(image_name)

    if flipudflag:
        original = flipud(original)

    # manage exclusion zone put them to 1 i.e. bottom
    if exclude_zones != None:
        # create markers of background and gravel
        markers_zones = m.zeros_like(original[:, :, 0])

        for zone in exclude_zones:
            xa = min(zone[0], zone[2])
            xb = max(zone[0], zone[2])
            ya = min(zone[1], zone[3])
            yb = max(zone[1], zone[3])
            markers_zones[ya:yb, xa:xb] = 1

    if roi != None:
        # crop the image
        xa = min(roi[0], roi[2])
        xb = max(roi[0], roi[2])
        ya = min(roi[1], roi[3])
        yb = max(roi[1], roi[3])

        original = original[ya:yb, xa:xb]

        if exclude_zones != None:
            markers_zones = markers_zones[ya:yb, xa:xb]

    # transform to hsv
    if opencv:
        img = cv2.cvtColor(original, cv2.COLOR_BGR2HSV)
    else:
        img = color.rgb2hsv(original)

    # use s chanel
    img = img[:, :, 1]

    # div by 255 si en couleur
    thre = img

    if show:
        m.figure()
        m.imshow(original)

    # test filtre sobel (avoir les pentes)
    if opencv:
        elev = cv2.Laplacian(thre, cv2.CV_64F)
    else:
        elev = filters.sobel(thre)

    # compute an auto threshold
    thresh = filters.threshold_otsu(thre)

    # create markers of background and gravel
    markers = m.zeros_like(thre)
    if show:
        print thresh

    markers[thre < thresh] = 2
    markers[thre > thresh] = 1

    if exclude_zones != None:
        markers[markers_zones == 1] = 1

    # use watershade transform (use markes as starting point)
    segmentation = morphology.watershed(elev, markers)

    # Clean small object
    if opencv:
        kernel = m.ones((2, 2), m.uint8)
        closing = cv2.morphologyEx(segmentation - 1, cv2.MORPH_CLOSE, kernel)
    else:
        closing = ndimage.binary_closing(segmentation - 1)

    tmp = ndimage.binary_fill_holes(closing)
    label_objects, nb_labels = ndimage.label(tmp)

    sizes = m.bincount(label_objects.ravel())
    mask_sizes = sizes > min_size
    mask_sizes[0] = 0
    segmentation_cleaned = mask_sizes[label_objects]

    # relabel cleaned version of segmentation
    label_objects_clean, nb_label_clean = ndimage.label(segmentation_cleaned)

    # plot contour of object
    if show:
        m.contour(ndimage.binary_fill_holes(label_objects_clean), linewidths=1.2, colors="y")

    # trouve les informations des objets
    # old version of scikit properties=measurement_types
    mes = measure.regionprops(label_objects_clean)

    granulo = []
    for prop in mes:
        # Correct orientation ! car orientation prend pas en compte le cadrant !!!
        #: elements of the inertia tensor [a b; b c]
        Orientation = GetOrientation(prop["CentralMoments"])

        x0 = prop["Centroid"][1]
        y0 = prop["Centroid"][0]
        x1 = x0 + m.cos(Orientation) * 0.5 * prop["MajorAxisLength"]
        y1 = y0 - m.sin(Orientation) * 0.5 * prop["MajorAxisLength"]
        x2 = x0 - m.sin(Orientation) * 0.5 * prop["MinorAxisLength"]
        y2 = y0 - m.cos(Orientation) * 0.5 * prop["MinorAxisLength"]

        if show:
            m.plot((x0, x1), (y0, y1), "-r", linewidth=2.5)
            m.plot((x0, x2), (y0, y2), "-r", linewidth=2.5)

            m.plot(x0, y0, ".g", markersize=15)

        granulo.append(prop["MinorAxisLength"] / scale)
    #    minr, minc, maxr, maxc = prop['BoundingBox']
    #    bx = (minc, maxc, maxc, minc, minc)
    #    by = (minr, minr, maxr, maxr, minr)[
    #    m.plot(bx, by, '-b', linewidth=2.5)

    return m.array(granulo), label_objects_clean, mes
コード例 #9
0
###  calculating MFs
dm = 0.25
lmassbins = pylab.arange(9.5 - dm / 2., 11.5 + dm, dm)
lmassbars = (lmassbins[1:] + lmassbins[:-1]) / 2.

xlo, xhi = 25. * 100. / dx_map, 100 - 25. * 100. / dx_map
ylo, yhi = 25. * 100. / dy_map, 100 - 25. * 100. / dy_map

inds0 = pylab.find((overdens_arr > 0.0) & (overdens_arr < 0.5)
                   & (simdata.x_cMpc > xlo) & (simdata.x_cMpc < xhi)
                   & (simdata.y_cMpc > ylo) & (simdata.y_cMpc < yhi))
inds1 = pylab.find((overdens_arr > 0.5) & (overdens_arr < 1.0)
                   & (simdata.x_cMpc > xlo) & (simdata.x_cMpc < xhi)
                   & (simdata.y_cMpc > ylo) & (simdata.y_cMpc < yhi))
inds2 = pylab.find((overdens_arr > 1.0) & (overdens_arr < 1.5)
                   & (simdata.x_cMpc > xlo) & (simdata.x_cMpc < xhi)
                   & (simdata.y_cMpc > ylo) & (simdata.y_cMpc < yhi))
inds3 = pylab.find((overdens_arr > 1.5) & (overdens_arr < 2.0)
                   & (simdata.x_cMpc > xlo) & (simdata.x_cMpc < xhi)
                   & (simdata.y_cMpc > ylo) & (simdata.y_cMpc < yhi))

digi0 = pylab.digitize(pylab.log10(simdata.stellarMass[inds0]), lmassbins)
digi1 = pylab.digitize(pylab.log10(simdata.stellarMass[inds1]), lmassbins)
digi2 = pylab.digitize(pylab.log10(simdata.stellarMass[inds2]), lmassbins)
digi3 = pylab.digitize(pylab.log10(simdata.stellarMass[inds3]), lmassbins)

ngal0 = pylab.bincount(digi0, minlength=len(lmassbins) + 1)[1:-1]
ngal1 = pylab.bincount(digi1, minlength=len(lmassbins) + 1)[1:-1]
ngal2 = pylab.bincount(digi2, minlength=len(lmassbins) + 1)[1:-1]
ngal3 = pylab.bincount(digi3, minlength=len(lmassbins) + 1)[1:-1]
コード例 #10
0
 def testOutput(self):
     self.assertEqual(bincount(self.net2.ao.astype('int'))[0], 2)
     self.assertEqual(bincount(self.net2.ao.astype('int'))[1], 1)
コード例 #11
0
                             & (f.fout.z[f.inds_spatial] < zhi))

        subinds_massive = pylab.find((f.cat.use[f.inds_spatial] == 1)
                                     & (f.fout.z[f.inds_spatial] > zlo)
                                     & (f.fout.z[f.inds_spatial] < zhi)
                                     & (f.fout.lmass[f.inds_spatial] > 11))

        if 0.19 < zlo < 0.76:
            for si in subinds_massive:
                s[fi] += ' mugshot_%05i_%s.pdf' % (
                    f.cat.id[f.inds_spatial][si], f.version)

        digi_mass = pylab.digitize(f.fout.lmass[f.inds_spatial][subinds],
                                   massbins)

        ngal_bins = pylab.bincount(digi_mass,
                                   minlength=len(massbins) + 1)[1:-1]
        nlo_poisson, nhi_poisson = [], []
        for n in ngal_bins:
            nhi, nlo = mypy.massfunc.confidence_interval(n)
            nlo_poisson.append(nlo)
            nhi_poisson.append(nhi)
        nlo_poisson, nhi_poisson = pylab.array(nlo_poisson), pylab.array(
            nhi_poisson)

        phi_bins = ngal_bins * 1. / volume / dm

        ephi_lo = phi_bins * nlo_poisson / ngal_bins
        ephi_lo[pylab.isnan(ephi_lo)] = 0
        ephi_hi = phi_bins * nhi_poisson / ngal_bins
        ephi_hi[pylab.isnan(ephi_hi)] = (
            1. / volume / dm) * nhi_poisson[pylab.isnan(ephi_hi)] / 1.
コード例 #12
0
ファイル: long.py プロジェクト: alifwahid/wordtropy
#! /usr/bin/env python

import sys, pylab

x = 5**5**5
t = '$5^{5^5}$'
l = pylab.fromstring(str(x), dtype='uint8') - 48 #Remove ASCII 0 offset

bin_var = pylab.arange(10)
bin_cnt = pylab.bincount(l, minlength=10).astype('double')
bin_cnt /= bin_cnt.sum()
bin_cnt -= bin_cnt.mean()

bin_srt = bin_cnt.argsort()
    
pylab.figure(1)
pylab.barh(bin_var, bin_cnt[bin_srt], align='center')
pylab.yticks(bin_var, bin_srt)
pylab.axis(ymin=-0.5, ymax=9.5)
pylab.axvline(0)
pylab.ylabel(r'Decimal Digits (sorted by frequency)')
pylab.xlabel(r'Mean Centred Normalised Frequency')
pylab.title(r'%s is %d decimal digits long' % (t, len(l)))
pylab.grid(True)
pylab.savefig('long.png')

pylab.show()