コード例 #1
0
def continuous_stagewise_separate():
    arrsum = ArraySummary("Continuous vs Stage-wise vs Separate")
    with arrsum.create(tex.Section("Overview")):
        arrsum.add_tabular(get_tab_data(data, parameters, by_exp_type, by_reward, get_std, name="STD"))
    for reward_type in ["minimize", "maximize", "target", "range"]:
        grouped_by_reward_params = group_parameters_by(parameters_by_reward_type[reward_type], lambda x: tuple(x[reward_type + "_pred_err"]) if type(x[reward_type + "_pred_err"]) == list else x[reward_type + "_pred_err"])
        for k in grouped_by_reward_params:
            with arrsum.create(tex.Section(reward_type + str(k))):
                groups = group_parameters_by(grouped_by_reward_params[k], lambda x: "stages" if x["continuous"] is None else "continuous")
                with arrsum.create(tex.Subsection("Stages")):
                    sub_groups = group_parameters_by(groups["stages"], lambda x: "separate" if x["separate"] else "joint")
                    with arrsum.create(tex.Subsubsection("Separate")):
                        for p in sub_groups["separate"]:
                            arrsum.add_experiment(p)
                    with arrsum.create(tex.Subsubsection("Joint")):
                        for p in sub_groups["joint"]:
                            arrsum.add_experiment(p)
                arrsum.clearpage()
                with arrsum.create(tex.Subsection("Continuous")):
                    sub_groups = group_parameters_by(groups["continuous"], lambda x: "separate" if x["separate"] else "joint")
                    with arrsum.create(tex.Subsubsection("Separate")):
                        for p in sub_groups["separate"]:
                            arrsum.add_experiment(p)
                    with arrsum.create(tex.Subsubsection("Joint")):
                        for p in sub_groups["joint"]:
                            arrsum.add_experiment(p)
                arrsum.clearpage()
    arrsum.generate_pdf(filepath=path_to_array + "new_impl", clean_tex=False)
コード例 #2
0
    def finalize(self):
        doc = util.create_doc(
            f"Correlator Fits: {self.ensemble_name} - {self.task_name}")

        for operator_set, operator_fits in self.operator_fits.items():
            with doc.create(pylatex.Section(str(operator_set))):
                for operator, fits in operator_fits.items():
                    with doc.create(pylatex.Subsection(str(operator))):
                        for fit, fit_infos in fits.items():

                            # normal fits
                            logfile = self.logfile(operator_set, operator,
                                                   fit.name)
                            fit_log = sigmond_info.sigmond_log.FitLog(logfile)
                            if self.fit_plots:
                                plotdir = self.fit_plotdir(
                                    operator_set, operator, fit.name)
                                util.dirGrace2pdf(plotdir)

                            section_title = f"{fit.name} - Model: {fit.model.short_name}"
                            with doc.create(
                                    pylatex.Subsubsection(section_title)):
                                self._add_fits(doc, fit_log, fit.name,
                                               operator_set, fit.ratio,
                                               fit.model.has_gap,
                                               fit.model.has_const)

                            # tmin fits
                            if self.tmin_plots:
                                plotdir = self.tmin_fit_plotdir(
                                    operator_set, operator, fit.name)
                                util.dirGrace2pdf(plotdir)
                                tmin_fit_infos = list()
                                for fit_info in fit_infos['tmin']:
                                    plotfile = self.tmin_fit_plotfile(
                                        operator_set,
                                        fit.name,
                                        fit_info,
                                        extension=util.PlotExtension.pdf)
                                    if os.path.isfile(plotfile):
                                        tmin_fit_infos.append(fit_info)

                                if len(tmin_fit_infos) == 0:
                                    continue

                                tmin_fit_infos.sort(
                                    key=lambda fit_info: fit_info.tmax)
                                section_title = f"$t_{{\\rm min}}$ plots - {fit.name} - Model: {fit.model.short_name}"
                                with doc.create(
                                        pylatex.Subsubsection(
                                            pylatex.NoEscape(section_title))):
                                    self._add_tmins(doc, tmin_fit_infos,
                                                    fit.name, operator_set,
                                                    fit.ratio)

        results_dir = self.results_dir
        os.makedirs(results_dir, exist_ok=True)
        filename = os.path.join(results_dir, self.task_name)
        util.compile_pdf(doc, filename, self.latex_compiler)
コード例 #3
0
ファイル: __init__.py プロジェクト: levinericzimmermann/aml
def _add_string_notes(document: pylatex.Document, texts: dict,
                      images: dict) -> None:
    document.append(
        pylatex.Subsection(
            title=texts["strings"]["title"],
            label=False,
            numbering=False,
        ))

    document.append(
        pylatex.Subsubsection(
            title=texts["strings"]["subtitle0"],
            label=False,
            numbering=False,
        ))

    document.append(texts["strings"]["text0"])

    document.append(
        pylatex.Subsubsection(
            title=texts["microtonal_notation"]["title"],
            label=False,
            numbering=False,
        ))
    document.append(texts["microtonal_notation"]["text0"])
    document.append(_make_img(images["twelfth_tone_explanation"]))

    document.append(texts["microtonal_notation"]["text1"])

    for instrument in ("violin", "viola", "cello"):
        document.append(_make_img(images["scale_{}".format(instrument)]))
        document.append(
            _make_img(
                images["scale_{}_artificial_harmonics".format(instrument)]))
        document.append(
            pylatex.Command("hspace", arguments=[pylatex.NoEscape("5mm")]))

    document.append(texts["microtonal_notation"]["text2"])

    document.append(
        pylatex.Subsubsection(
            title=texts["strings"]["subtitle1"],
            label=False,
            numbering=False,
        ))
    document.append(_make_img(images["ornamentation"], width=0.25))
    document.append(texts["strings"]["text1"])

    document.append(_make_img(images["glissando"], width=0.28))

    document.append(texts["strings"]["text2"])
コード例 #4
0
    def addPlotsToPDF(self, doc, data_files, operators, name):
        obs_handler, _ = util.get_obs_handlers(data_files, self.bins_info,
                                               self.sampling_info)

        corr_plotsdir = self.correlator_plotdir(name)
        energy_plotsdir = self.energy_plotdir(name)
        util.dirGrace2pdf(corr_plotsdir)
        util.dirGrace2pdf(energy_plotsdir)

        off_diag_corrs = list()

        for op_src in operators:
            for op_snk in operators:
                if op_src == op_snk:
                    continue

                corr = sigmond.CorrelatorInfo(op_snk.operator_info,
                                              op_src.operator_info)
                if not self.data_handler.hasCorrelator(corr):
                    continue

                off_diag_corrs.append(corr)

        with doc.create(pylatex.Subsection("Diagonal Correlators")):
            for operator in operators:
                corr = sigmond.CorrelatorInfo(operator.operator_info,
                                              operator.operator_info)
                if self.data_handler.hasCorrelator(corr):
                    with doc.create(pylatex.Subsubsection(str(operator))):
                        util.add_correlator(doc, self, corr, name, obs_handler)

        if self.off_diagonal and off_diag_corrs:
            with doc.create(pylatex.Subsection("Off-Diagonal Correlators")):
                for corr in off_diag_corrs:
                    with doc.create(pylatex.Subsubsection(corr.corr_str())):
                        util.add_correlator(doc, self, corr, name, obs_handler)
コード例 #5
0
  def finalize(self):
    doc = util.create_doc(f"Rotated Correlators and Effective Energies: {self.task_name} - {self.ensemble_name}")

    for operator_basis in self.operator_bases:
      logfile = self.logfile(repr(operator_basis))
      rotation_log = sigmond_info.sigmond_log.RotationLog(logfile)
      if rotation_log.failed:
        logging.warning(f"Rotation {operator_basis.name} failed")
        continue

      corr_plotsdir = self.correlator_plotdir(operator_basis)
      energy_plotsdir = self.energy_plotdir(operator_basis)
      util.dirGrace2pdf(corr_plotsdir)
      util.dirGrace2pdf(energy_plotsdir)

      data_files = self.data_handler.getRotatedDataFiles(operator_basis)
      obs_handler, _ = util.get_obs_handlers(data_files, self.bins_info, self.sampling_info)

      with doc.create(pylatex.Section(f"{operator_basis.channel!s} - {operator_basis.name}")):
        with doc.create(pylatex.Subsection("Rotation Info")):
          with doc.create(pylatex.Center()) as centered:
            with centered.create(
                pylatex.LongTabu("X[c]|X[c]|X[c]|X[c]|X[c]|X[3,c]|X[3,c]|X[3,c]|X[3,c]|X[3,c]",
                                 to=r"\linewidth")) as param_table:
              header_row = [
                  pylatex.NoEscape(r"$N_{op}$"),
                  pylatex.NoEscape(r"$N_{\text{d}}$"),
                  pylatex.NoEscape(r"$\tau_N$"),
                  pylatex.NoEscape(r"$\tau_0$"),
                  pylatex.NoEscape(r"$\tau_D$"),
                  pylatex.NoEscape(r"$\xi_{cn}$ (max)"),
                  pylatex.NoEscape(r"$\xi_{cn}^C$ (input)"),
                  pylatex.NoEscape(r"$\xi_{cn}^C$ (retain)"),
                  pylatex.NoEscape(r"$\xi_{cn}^G$ (input)"),
                  pylatex.NoEscape(r"$\xi_{cn}^G$ (retain)"),
              ]
              param_table.add_row(header_row, mapper=[pylatex.utils.bold])
              param_table.add_hline()
              param_table.end_table_header()
              value_row = [
                  operator_basis.num_operators,
                  operator_basis.num_operators - rotation_log.number_levels,
                  operator_basis.pivot_info.norm_time,
                  operator_basis.pivot_info.metric_time,
                  operator_basis.pivot_info.diagonalize_time,
                  operator_basis.pivot_info.max_condition_number,
                  rotation_log.metric_condition(False),
                  rotation_log.metric_condition(True),
                  rotation_log.matrix_condition(False),
                  rotation_log.matrix_condition(True),
              ]
              param_table.add_row(value_row)

          doc.append(pylatex.NoEscape(r"\textbf{Metric Null Space Check:} " + \
                                      rotation_log.metric_null_space_message))

          with doc.create(pylatex.Subsubsection("Input Operators")):
            with doc.create(pylatex.Center()) as centered:
              with centered.create(
                  pylatex.LongTabu("X[2,c] X[c] X[c]", row_height=1.5)) as op_table:
                header_row = [
                    "Operator",
                    pylatex.NoEscape(r"$\delta C(\tau_0)$"),
                    pylatex.NoEscape(r"$\delta C(\tau_D)$")
                ]
                op_table.add_row(header_row, mapper=[pylatex.utils.bold])
                op_table.add_hline()
                op_table.end_table_header()
                for op, errors in rotation_log.diagonal_correlator_errors.items():
                  row = [
                      op,
                      errors.metric,
                      errors.matrix,
                  ]
                  op_table.add_row
                  op_table.add_row(row)

          with doc.create(pylatex.Subsubsection("Diagonal Deviations From Zero")):
            with doc.create(pylatex.Center()) as centered:
              with centered.create(
                  pylatex.LongTabu("X[c] X[4,c] X[3,c] X[3,c] X[3,c] X[3,c] X[2,c]")) as deviation_table:
                header_row = [
                    "time",
                    pylatex.NoEscape(r"$\delta 0_{max}$"),
                    pylatex.NoEscape(r"$\% > 1 \sigma$"),
                    pylatex.NoEscape(r"$\% > 2 \sigma$"),
                    pylatex.NoEscape(r"$\% > 3 \sigma$"),
                    pylatex.NoEscape(r"$\% > 4 \sigma$"),
                    "Status",
                ]
                deviation_table.add_row(header_row, mapper=[pylatex.utils.bold])
                deviation_table.add_hline()
                deviation_table.end_table_header()
                for time, deviation in rotation_log.deviations_from_zero.items():
                  row = [
                      time,
                      deviation.max,
                      deviation.one,
                      deviation.two,
                      deviation.three,
                      deviation.four,
                      deviation.status,
                  ]
                  deviation_table.add_row(row)

        doc.append(pylatex.NoEscape(r"\newpage"))

        operators = self.data_handler.getRotatedOperators(operator_basis)
        with doc.create(pylatex.Subsection("Correlators/Effective Energies")):
          for operator in operators:
            with doc.create(pylatex.Subsubsection(str(operator))):
              corr = sigmond.CorrelatorInfo(operator.operator_info, operator.operator_info)
              util.add_correlator(doc, self, corr, operator_basis, obs_handler)

    results_dir = self.results_dir
    os.makedirs(results_dir, exist_ok=True)
    filename = os.path.join(results_dir, self.task_name)
    util.compile_pdf(doc, filename, self.latex_compiler)
コード例 #6
0
def generate_roga(seq_lsts_dict, genus, lab, source, work_dir, amendment_flag,
                  amended_id):
    """
    Generates PDF
    :param seq_lsts_dict: Dict of SeqIDs;LSTSIDs
    :param genus: Expected Genus for samples (Salmonella, Listeria, Escherichia, or Vibrio)
    :param lab: ID for lab report is being generated for
    :param source: string input for source that strains were derived from, i.e. 'ground beef'
    :param work_dir: bio_request directory
    :param amendment_flag: determined if the report is an amendment type or not (True/False)
    :param amended_id: ID of the original report that the new report is amending
    """

    # RETRIEVE DATAFRAMES FOR EACH SEQID
    seq_list = list(seq_lsts_dict.keys())

    metadata_reports = extract_report_data.get_combined_metadata(seq_list)
    gdcs_reports = extract_report_data.get_gdcs(seq_list)
    gdcs_dict = extract_report_data.generate_gdcs_dict(gdcs_reports)

    # Create our idiot proofing list. There are a bunch of things that can go wrong that should make us not send
    # out reports. As we go through data retrieval/report generation, add things that are wrong to the list, and users
    # will get a message saying what's wrong, no report will be generated unless user adds the FORCE flag.
    idiot_proofing_list = list()
    # DATE SETUP
    date = datetime.today().strftime('%Y-%m-%d')
    year = datetime.today().strftime('%Y')
    # Follow our fiscal year - anything before April is actually previous year.
    if datetime.now().month < 4:
        year = int(year) - 1

    # PAGE SETUP
    geometry_options = {
        "tmargin": "2cm",
        "lmargin": "1cm",
        "rmargin": "1cm",
        "headsep": "1cm"
    }

    doc = pl.Document(page_numbers=False, geometry_options=geometry_options)

    header = produce_header_footer()
    doc.preamble.append(header)
    doc.change_document_style("header")

    # DATABASE HANDLING
    report_id = update_db(date=date,
                          year=year,
                          genus=genus,
                          lab=lab,
                          source=source,
                          amendment_flag=amendment_flag,
                          amended_id=amended_id)

    # MARKER VARIABLES SETUP
    all_uida = False
    all_vt = False
    all_mono = False
    all_enterica = False
    all_vibrio = False
    some_vt = False
    vt_sample_list = []

    # SECOND VALIDATION SCREEN
    if genus == 'Escherichia':
        validated_ecoli_dict = extract_report_data.validate_ecoli(
            seq_list, metadata_reports)
        vt_list = []
        uida_list = []
        hlya_list = []

        for key, value in validated_ecoli_dict.items():
            ecoli_uida_present = validated_ecoli_dict[key][0]
            ecoli_vt_present = validated_ecoli_dict[key][1]
            ecoli_hlya_present = validated_ecoli_dict[key][2]

            hlya_list.append(ecoli_hlya_present)
            uida_list.append(ecoli_uida_present)
            vt_list.append(ecoli_vt_present)

            # For the AMR table so only vt+ samples are shown
            if ecoli_vt_present is True:
                vt_sample_list.append(key)

            if not ecoli_uida_present:
                print(
                    'WARNING: uidA not present for {}. Cannot confirm E. coli.'
                    .format(key))
                idiot_proofing_list.append(
                    'uidA not present in {}. Cannot confirm E. coli'.format(
                        key))
            if not ecoli_vt_present:
                print('WARNING: vt probe sequences not detected for {}. '
                      'Cannot confirm strain is verotoxigenic.'.format(key))
                idiot_proofing_list.append(
                    'VTX not present in {}. Cannot confirm strain is verotoxigenic'
                    .format(key))

        if False not in uida_list:
            all_uida = True
        if False not in vt_list:
            all_vt = True

        if True in vt_list:
            some_vt = True

    elif genus == 'Listeria':
        validated_listeria_dict = extract_report_data.validate_listeria(
            seq_list, metadata_reports)
        mono_list = []
        for key, value in validated_listeria_dict.items():
            mono_list.append(value)
            if value is False:
                idiot_proofing_list.append(
                    'Could not confirm {} as L. monocytogenes'.format(key))
        if False not in mono_list:
            all_mono = True

    elif genus == 'Salmonella':
        validated_salmonella_dict = extract_report_data.validate_salmonella(
            seq_list, metadata_reports)
        enterica_list = []
        for key, value in validated_salmonella_dict.items():
            enterica_list.append(value)
            if value is False:
                idiot_proofing_list.append(
                    'Could not confirm {} as S. enterica'.format(key))
        if False not in enterica_list:
            all_enterica = True

    elif genus == 'Vibrio':
        validated_vibrio_dict = extract_report_data.validate_vibrio(
            seq_list, metadata_reports)
        vibrio_list = list()
        for key, value in validated_vibrio_dict.items():
            vibrio_list.append(value)
            if value is False:
                idiot_proofing_list.append(
                    'Could not confirm {} as Vibrio'.format(key))
        if False not in vibrio_list:
            all_vibrio = True

    # MAIN DOCUMENT BODY
    with doc.create(
            pl.Section('Report of Genomic Analysis: ' + genus,
                       numbering=False)):

        # REPORT ID AND AMENDMENT CHECKING
        if amendment_flag:
            doc.append(bold('Report ID: '))
            doc.append(report_id)
            doc.append(italic(' (This report is an amended version of '))
            doc.append(amended_id)
            doc.append(italic(')'))
            doc.append('\n')
            doc.append(
                pl.Command('TextField',
                           options=[
                               "name=rdimsnumberbox", "multiline=false",
                               pl.NoEscape("bordercolor=0 0 0"),
                               pl.NoEscape("width=1.1in"), "height=0.2in"
                           ],
                           arguments=bold('RDIMS ID: ')))
            doc.append(bold('\nReporting laboratory: '))
            doc.append(lab)
            doc.append('\n\n')

            # LAB SUMMARY
            with doc.create(pl.Tabular('lcr', booktabs=True)) as table:
                table.add_row(bold('Laboratory'), bold('Address'),
                              bold('Tel #'))
                table.add_row(lab, lab_info[lab][0], lab_info[lab][1])

            # AMENDMENT FIELD
            with doc.create(
                    pl.Subsubsection('Reason for amendment:',
                                     numbering=False)):
                with doc.create(Form()):
                    doc.append(pl.Command('noindent'))
                    doc.append(
                        pl.Command('TextField',
                                   options=[
                                       "name=amendmentbox", "multiline=true",
                                       pl.NoEscape("bordercolor=0 0 0"),
                                       pl.NoEscape("width=7in"),
                                       "height=0.43in"
                                   ],
                                   arguments=''))
        else:
            doc.append(bold('Report ID: '))
            doc.append(report_id)
            doc.append('\n')
            doc.append(
                pl.Command('TextField',
                           options=[
                               "name=rdimsnumberbox", "multiline=false",
                               pl.NoEscape("bordercolor=0 0 0"),
                               pl.NoEscape("width=1.1in"), "height=0.2in"
                           ],
                           arguments=bold('RDIMS ID: ')))
            doc.append(bold('\nReporting laboratory: '))
            doc.append(lab)
            doc.append('\n\n')

            # LAB SUMMARY
            with doc.create(pl.Tabular('lcr', booktabs=True)) as table:
                table.add_row(bold('Laboratory'), bold('Address'),
                              bold('Tel #'))
                table.add_row(lab, lab_info[lab][0], lab_info[lab][1])

        # TEXT SUMMARY
        with doc.create(
                pl.Subsection('Identification Summary',
                              numbering=False)) as summary:

            summary.append('Whole-genome sequencing analysis was conducted on '
                           '{} '.format(len(metadata_reports)))
            summary.append(italic('{} '.format(genus)))

            if len(metadata_reports) == 1:
                summary.append('strain isolated from "{}". '.format(
                    source.lower()))
            else:
                summary.append('strains isolated from "{}". '.format(
                    source.lower()))

            if genus == 'Escherichia':
                if all_uida:
                    summary.append('The following strains are confirmed as ')
                    summary.append(italic('Escherichia coli '))
                    summary.append(
                        'based on 16S sequence and the presence of marker gene '
                    )
                    summary.append(italic('uidA. '))
                elif not all_uida:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Escherichia coli '))
                    summary.append('as the ')
                    summary.append(italic('uidA '))
                    summary.append('marker gene was not detected. ')

                if all_vt:
                    summary.append(
                        'All strain(s) are confirmed to be VTEC based on detection of probe sequences '
                        'indicating the presence of verotoxin genes.')

            elif genus == 'Listeria':
                if all_mono:
                    summary.append(
                        'The following strains are confirmed to be ')
                    summary.append(italic('Listeria monocytogenes '))
                    summary.append('based on GeneSeekr analysis: ')
                else:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Listeria monocytogenes.'))

            elif genus == 'Salmonella':
                if all_enterica:
                    summary.append(
                        'The following strains are confirmed to be ')
                    summary.append(italic('Salmonella enterica '))
                    summary.append('based on GeneSeekr analysis: ')
                else:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Salmonella enterica.'))

            elif genus == 'Vibrio':
                if all_vibrio:
                    summary.append(
                        'The following strains are confirmed to be ')
                    summary.append(italic('Vibrio parahaemolyticus '))
                    summary.append('based on GeneSeekr analysis: ')
                else:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Vibrio parahaemolyticus.'))

        # VIBRIO TABLE
        if genus == 'Vibrio':
            genesippr_table_columns = (
                bold('ID'),
                bold(pl.NoEscape(r'R72H{\footnotesize \textsuperscript {a}}')),
                bold(
                    pl.NoEscape(r'groEL{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'Virulence Profile')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        # lsts_id = df.loc[df['SeqID'] == sample_id]['SampleName'].values[0]
                        lsts_id = seq_lsts_dict[sample_id]

                        # Genus
                        genus = df.loc[df['SeqID'] ==
                                       sample_id]['Genus'].values[0]

                        # MLST/rMLST
                        mlst = str(df.loc[df['SeqID'] == sample_id]
                                   ['MLST_Result'].values[0]).replace(
                                       '-', 'New')
                        rmlst = str(df.loc[df['SeqID'] == sample_id]
                                    ['rMLST_Result'].values[0]).replace(
                                        '-', 'New')

                        # Markers
                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]
                        (r72h, groel) = '-', '-'
                        if 'r72h' in marker_list:
                            r72h = '+'
                        if 'groEL' in marker_list:
                            groel = '+'

                        # Virulence
                        virulence = ''
                        if 'tdh' in marker_list:
                            virulence += 'tdh;'
                        if 'trh' in marker_list:
                            virulence += 'trh;'
                        if ';' in virulence:
                            virulence = virulence[:-1]
                        if virulence == '':
                            virulence = '-'

                        table.add_row(
                            (lsts_id, r72h, groel, virulence, mlst, rmlst))
                    table.add_hline()
                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # ESCHERICHIA TABLE
        if genus == 'Escherichia':
            genesippr_table_columns = (
                bold('ID'),
                bold(pl.NoEscape(r'uidA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'Serotype')),
                bold(pl.NoEscape(r'Verotoxin(s)')),
                bold(pl.NoEscape(r'hlyA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'eae{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'aggR{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        # lsts_id = df.loc[df['SeqID'] == sample_id]['SampleName'].values[0]
                        lsts_id = seq_lsts_dict[sample_id]

                        # Genus (pulled from 16S)
                        genus = df.loc[df['SeqID'] ==
                                       sample_id]['Genus'].values[0]

                        # Serotype
                        serotype = df.loc[df['SeqID'] == sample_id][
                            'E_coli_Serotype'].values[0]

                        # Remove % identity
                        fixed_serotype = remove_bracketed_values(serotype)

                        # Verotoxin
                        verotoxin = df.loc[df['SeqID'] == sample_id][
                            'Vtyper_Profile'].values[0]

                        # MLST/rMLST
                        mlst = str(df.loc[df['SeqID'] == sample_id]
                                   ['MLST_Result'].values[0]).replace(
                                       '-', 'New')
                        rmlst = str(df.loc[df['SeqID'] == sample_id]
                                    ['rMLST_Result'].values[0]).replace(
                                        '-', 'New')

                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]

                        (uida, eae, hlya, aggr) = '-', '-', '-', '-'
                        if 'uidA' in marker_list:
                            uida = '+'
                        if 'eae' in marker_list:
                            eae = '+'
                        if 'hlyA' in marker_list:
                            hlya = '+'
                        if 'aggR' in marker_list:
                            aggr = '+'

                        table.add_row(
                            (lsts_id, uida, fixed_serotype, verotoxin, hlya,
                             eae, aggr, mlst, rmlst))
                    table.add_hline()

                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # LISTERIA TABLE
        if genus == 'Listeria':
            genesippr_table_columns = (
                bold('ID'),
                bold(pl.NoEscape(r'IGS{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'hlyA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'inlJ{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        # lsts_id = df.loc[df['SeqID'] == sample_id]['SampleName'].values[0]
                        lsts_id = seq_lsts_dict[sample_id]

                        # Genus
                        genus = df.loc[df['SeqID'] ==
                                       sample_id]['Genus'].values[0]

                        # MLST/rMLST
                        mlst = str(df.loc[df['SeqID'] == sample_id]
                                   ['MLST_Result'].values[0]).replace(
                                       '-', 'New')
                        rmlst = str(df.loc[df['SeqID'] == sample_id]
                                    ['rMLST_Result'].values[0]).replace(
                                        '-', 'New')

                        # Markers
                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]
                        (igs, hlya, inlj) = '-', '-', '-'
                        if 'IGS' in marker_list:
                            igs = '+'
                        if 'hlyA' in marker_list:
                            hlya = '+'
                        if 'inlJ' in marker_list:
                            inlj = '+'

                        table.add_row((lsts_id, igs, hlya, inlj, mlst, rmlst))
                    table.add_hline()
                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # SALMONELLA TABLE
        if genus == 'Salmonella':
            genesippr_table_columns = (
                bold('ID'),
                bold(
                    pl.NoEscape(
                        r'Serovar{\footnotesize \textsuperscript {a}}')),
                bold(
                    pl.NoEscape(
                        r'Serogroup{\footnotesize \textsuperscript {a,b}}')),
                bold(pl.NoEscape(r'H1{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'H2{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'invA{\footnotesize \textsuperscript {b}}')),
                bold(pl.NoEscape(r'stn{\footnotesize \textsuperscript {b}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(
                        pl.Tabular('|c|p{2cm}|c|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        # lsts_id = df.loc[df['SeqID'] == sample_id]['SampleName'].values[0]
                        lsts_id = seq_lsts_dict[sample_id]

                        # MLST/rMLST
                        mlst = str(df.loc[df['SeqID'] == sample_id]
                                   ['MLST_Result'].values[0]).replace(
                                       '-', 'New')
                        rmlst = str(df.loc[df['SeqID'] == sample_id]
                                    ['rMLST_Result'].values[0]).replace(
                                        '-', 'New')

                        # Serovar
                        serovar = df.loc[df['SeqID'] ==
                                         sample_id]['SISTR_serovar'].values[0]
                        # If the serovar is particularly long, tables end up being longer than the page.
                        # To fix, try to find a space somewhere near the middle of the serovar string and insert a
                        # newline there.

                        if len(serovar) > 12:
                            # First, find what index a space is that we can change.
                            starting_index = int(len(serovar) / 2)
                            index_to_change = 999
                            for i in range(starting_index, len(serovar)):
                                if serovar[i] == ' ':
                                    index_to_change = i
                                    break
                            if index_to_change != 999:
                                serovar_with_newline = ''
                                for i in range(len(serovar)):
                                    if i == index_to_change:
                                        serovar_with_newline += '\\newline '
                                    else:
                                        serovar_with_newline += serovar[i]
                                serovar = pl.NoEscape(r'' +
                                                      serovar_with_newline)

                        # SISTR Serogroup, H1, H2
                        sistr_serogroup = df.loc[df['SeqID'] == sample_id][
                            'SISTR_serogroup'].values[0]
                        sistr_h1 = df.loc[df['SeqID'] == sample_id][
                            'SISTR_h1'].values[0].strip(';')
                        sistr_h2 = df.loc[df['SeqID'] == sample_id][
                            'SISTR_h2'].values[0].strip(';')

                        # Markers
                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]
                        (inva, stn) = '-', '-'
                        if 'invA' in marker_list:
                            inva = '+'
                        if 'stn' in marker_list:
                            stn = '+'

                        table.add_row(
                            (lsts_id, serovar, sistr_serogroup, sistr_h1,
                             sistr_h2, inva, stn, mlst, rmlst))
                    table.add_hline()

                create_caption(
                    genesippr_section, 'a',
                    "Predictions conducted using SISTR "
                    "(Salmonella In Silico Typing Resource)")
                create_caption(
                    genesippr_section, 'b', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # AMR TABLE (VTEC and Salmonella only)
        create_amr_profile = False  # only create if an AMR profile exists for one of the provided samples
        amr_samples = []  # keep track of which samples to create rows for

        # Grab AMR profile as a pre-check to see if we should even create the AMR Profile table
        for sample_id, df in metadata_reports.items():
            profile = df.loc[df['SeqID'] == sample_id]['AMR_Profile'].values[0]
            parsed_profile = extract_report_data.parse_amr_profile(profile)
            if parsed_profile is not None:
                if genus == 'Salmonella':
                    amr_samples.append(sample_id)
                    create_amr_profile = True
                elif genus == 'Escherichia':
                    if sample_id in vt_sample_list:  # vt_sample_list contains all vt+ sample IDs
                        amr_samples.append(sample_id)
                        create_amr_profile = True
                elif genus == 'Vibrio':
                    amr_samples.append(sample_id)
                    create_amr_profile = True

        # Create table
        if (genus == 'Salmonella' or some_vt is True
                or genus == 'Vibrio') and create_amr_profile is True:
            with doc.create(
                    pl.Subsection('Antimicrobial Resistance Profiling',
                                  numbering=False)):
                with doc.create(pl.Tabular('|c|c|c|c|')) as table:
                    amr_columns = (bold('ID'),
                                   bold(pl.NoEscape(r'Resistance')),
                                   bold(pl.NoEscape(r'Gene')),
                                   bold(pl.NoEscape(r'Percent Identity')))
                    # Header
                    table.add_hline()
                    table.add_row(amr_columns)
                    # Keep track of what previous id and resistance were so we know how far to draw lines across
                    # table. Initialize to some gibberish.
                    previous_id = 'asdasdfasdfs'
                    previous_resistance = 'akjsdhfasdf'
                    # For the AMR table, don't re-write sample id if same sample has multiple resistances
                    # Also, don't re-write resistances if same resistance has multiple genes.
                    for sample_id, df in metadata_reports.items():
                        if sample_id in amr_samples:
                            # Grab AMR profile
                            profile = df.loc[df['SeqID'] == sample_id][
                                'AMR_Profile'].values[0]
                            # Parse and iterate through profile to generate rows
                            parsed_profile = extract_report_data.parse_amr_profile(
                                profile)
                            if parsed_profile is not None:
                                # Rows
                                for value in parsed_profile:
                                    # ID
                                    resistance = value.resistance
                                    res_to_write = resistance
                                    lsts_id = seq_lsts_dict[sample_id]
                                    # If sample we're on is different from previous sample, line goes all the
                                    # way across the table.
                                    if lsts_id != previous_id:
                                        table.add_hline()
                                        id_to_write = lsts_id
                                    # If sample is same and resistance is same, only want lines for gene and percent
                                    # identity columns. Don't write out id or resistance again.
                                    elif resistance == previous_resistance:
                                        table.add_hline(start=3, end=4)
                                        id_to_write = ''
                                        res_to_write = ''
                                    # Finally, if resistance is different, but id is same, need line across for
                                    # resistance, gene, and percent id. Write out everything but id
                                    else:
                                        table.add_hline(start=2, end=4)
                                        id_to_write = ''
                                    previous_id = lsts_id
                                    previous_resistance = resistance

                                    # Gene
                                    gene = value.gene

                                    # Identity
                                    identity = value.percent_id

                                    # Add row
                                    table.add_row((id_to_write, res_to_write,
                                                   gene, identity))
                    # Close off table
                    table.add_hline()

        # SEQUENCE TABLE
        with doc.create(
                pl.Subsection('Sequence Quality Metrics', numbering=False)):
            with doc.create(pl.Tabular('|c|c|c|c|c|')) as table:
                # Columns
                sequence_quality_columns = (
                    bold('ID'),
                    bold(pl.NoEscape(r'Total Length')),
                    bold(pl.NoEscape(r'Coverage')),
                    bold(pl.NoEscape(r'GDCS')),
                    bold(pl.NoEscape(r'Pass/Fail')),
                )

                # Header
                table.add_hline()
                table.add_row(sequence_quality_columns)

                # Rows
                for sample_id, df in metadata_reports.items():
                    table.add_hline()

                    # Grab values
                    # lsts_id = df.loc[df['SeqID'] == sample_id]['SampleName'].values[0]
                    lsts_id = seq_lsts_dict[sample_id]
                    total_length = df.loc[df['SeqID'] ==
                                          sample_id]['TotalLength'].values[0]
                    average_coverage_depth = df.loc[df['SeqID'] == sample_id][
                        'AverageCoverageDepth'].values[0]

                    # Fix coverage
                    average_coverage_depth = format(
                        float(str(average_coverage_depth).replace('X', '')),
                        '.0f')
                    average_coverage_depth = str(average_coverage_depth) + 'X'

                    # Matches
                    matches = gdcs_dict[sample_id][0]

                    passfail = gdcs_dict[sample_id][1]
                    if passfail == '+':
                        passfail = 'Pass'
                    elif passfail == '-':
                        passfail = 'Fail'
                        idiot_proofing_list.append(
                            '{} failed GDCS validation'.format(sample_id))

                    # Add row
                    table.add_row((lsts_id, total_length,
                                   average_coverage_depth, matches, passfail))
                table.add_hline()

        # PIPELINE METADATA TABLE
        pipeline_metadata_columns = (bold('ID'), bold('Seq ID'),
                                     bold('Pipeline Version'),
                                     bold('Database Version'))

        with doc.create(pl.Subsection('Pipeline Metadata', numbering=False)):
            with doc.create(pl.Tabular('|c|c|c|c|')) as table:
                # Header
                table.add_hline()
                table.add_row(pipeline_metadata_columns)

                # Rows
                for sample_id, df in metadata_reports.items():
                    table.add_hline()

                    # ID
                    # lsts_id = df.loc[df['SeqID'] == sample_id]['SampleName'].values[0]
                    lsts_id = seq_lsts_dict[sample_id]

                    # Pipeline version
                    pipeline_version = df.loc[
                        df['SeqID'] == sample_id]['PipelineVersion'].values[0]
                    database_version = pipeline_version

                    # Add row
                    table.add_row((lsts_id, sample_id, pipeline_version,
                                   database_version))

                table.add_hline()

        # 'VERIFIED BY' FIELD
        with doc.create(pl.Subsubsection('Verified by:', numbering=False)):
            with doc.create(Form()):
                doc.append(pl.Command('noindent'))
                doc.append(
                    pl.Command('TextField',
                               options=[
                                   "name=verifiedbybox", "multiline=false",
                                   pl.NoEscape("bordercolor=0 0 0"),
                                   pl.NoEscape("width=2.5in"), "height=0.3in"
                               ],
                               arguments=''))

    # OUTPUT PDF FILE
    pdf_file = os.path.join(work_dir,
                            '{}_{}_{}'.format(report_id, genus, date))

    try:
        doc.generate_pdf(pdf_file, clean_tex=False)
    except:
        pass

    pdf_file += '.pdf'
    return pdf_file, idiot_proofing_list
コード例 #7
0
def generate_roga(seq_list, genus, lab, source, work_dir, amendment_flag,
                  amended_id):
    """
    Generates PDF
    :param seq_list: List of OLC Seq IDs
    :param genus: Expected Genus for samples (Salmonella, Listeria, or Escherichia)
    :param lab: ID for lab report is being generated for
    :param source: string input for source that strains were derived from, i.e. 'ground beef'
    :param work_dir: bio_request directory
    :param amendment_flag: determined if the report is an amendment type or not (True/False)
    :param amended_id: ID of the original report that the new report is amending
    """

    # RETRIEVE DATAFRAMES FOR EACH SEQID
    metadata_reports = extract_report_data.get_combined_metadata(seq_list)
    gdcs_reports = extract_report_data.get_gdcs(seq_list)
    gdcs_dict = extract_report_data.generate_gdcs_dict(gdcs_reports)

    # DATE SETUP
    date = datetime.today().strftime('%Y-%m-%d')
    year = datetime.today().strftime('%Y')

    # PAGE SETUP
    geometry_options = {
        "tmargin": "2cm",
        "lmargin": "1cm",
        "rmargin": "1cm",
        "headsep": "1cm"
    }

    doc = pl.Document(page_numbers=False, geometry_options=geometry_options)

    header = produce_header_footer()
    doc.preamble.append(header)
    doc.change_document_style("header")

    # DATABASE HANDLING
    report_id = update_db(date=date,
                          year=year,
                          genus=genus,
                          lab=lab,
                          source=source,
                          amendment_flag=amendment_flag,
                          amended_id=amended_id)

    # MARKER VARIABLES SETUP
    all_uida = False
    all_vt = False
    all_mono = False
    all_enterica = False

    # SECOND VALIDATION SCREEN
    if genus == 'Escherichia':
        validated_ecoli_dict = extract_report_data.validate_ecoli(
            seq_list, metadata_reports)
        vt_list = []
        uida_list = []

        for key, value in validated_ecoli_dict.items():
            ecoli_uida_present = validated_ecoli_dict[key][0]
            ecoli_vt_present = validated_ecoli_dict[key][1]

            uida_list.append(ecoli_uida_present)
            vt_list.append(ecoli_vt_present)

            if not ecoli_uida_present:
                print(
                    'WARNING: uidA not present for {}. Cannot confirm E. coli.'
                    .format(key))
            if not ecoli_vt_present:
                print('WARNING: vt probe sequences not detected for {}. '
                      'Cannot confirm strain is verotoxigenic.'.format(key))

        if False not in uida_list:
            all_uida = True
        if False not in vt_list:
            all_vt = True

    elif genus == 'Listeria':
        validated_listeria_dict = extract_report_data.validate_listeria(
            seq_list, metadata_reports)
        mono_list = []
        for key, value in validated_listeria_dict.items():
            mono_list.append(value)
        if False not in mono_list:
            all_mono = True

    elif genus == 'Salmonella':
        validated_salmonella_dict = extract_report_data.validate_salmonella(
            seq_list, metadata_reports)
        enterica_list = []
        for key, value in validated_salmonella_dict.items():
            enterica_list.append(value)
        if False not in enterica_list:
            all_enterica = True

    # MAIN DOCUMENT BODY
    with doc.create(
            pl.Section('Report of Genomic Analysis: ' + genus,
                       numbering=False)):

        # REPORT ID AND AMENDMENT CHECKING
        if amendment_flag:
            doc.append(bold('Report ID: '))
            doc.append(report_id)
            doc.append(italic(' (This report is an amended version of '))
            doc.append(amended_id)
            doc.append(italic(')'))
            doc.append(bold('\nReporting laboratory: '))
            doc.append(lab)
            doc.append('\n\n')

            # LAB SUMMARY
            with doc.create(pl.Tabular('lcr', booktabs=True)) as table:
                table.add_row(bold('Laboratory'), bold('Address'),
                              bold('Tel #'))
                table.add_row(lab, lab_info[lab][0], lab_info[lab][1])

            # AMENDMENT FIELD
            with doc.create(
                    pl.Subsubsection('Reason for amendment:',
                                     numbering=False)):
                with doc.create(Form()):
                    doc.append(pl.Command('noindent'))
                    doc.append(
                        pl.Command('TextField',
                                   options=[
                                       "name=amendmentbox", "multiline=true",
                                       pl.NoEscape("bordercolor=0 0 0"),
                                       pl.NoEscape("width=7in"),
                                       "height=0.43in"
                                   ],
                                   arguments=''))
        else:
            doc.append(bold('Report ID: '))
            doc.append(report_id)
            doc.append(bold('\nReporting laboratory: '))
            doc.append(lab)
            doc.append('\n\n')

            # LAB SUMMARY
            with doc.create(pl.Tabular('lcr', booktabs=True)) as table:
                table.add_row(bold('Laboratory'), bold('Address'),
                              bold('Tel #'))
                table.add_row(lab, lab_info[lab][0], lab_info[lab][1])

        # TEXT SUMMARY
        with doc.create(
                pl.Subsection('Identification Summary',
                              numbering=False)) as summary:

            summary.append('Whole-genome sequencing analysis was conducted on '
                           '{} '.format(len(metadata_reports)))
            summary.append(italic('{} '.format(genus)))

            if len(metadata_reports) == 1:
                summary.append('strain isolated from "{}". '.format(
                    source.lower()))
            else:
                summary.append('strains isolated from "{}". '.format(
                    source.lower()))

            if genus == 'Escherichia':
                if all_uida:
                    summary.append('The following strains are confirmed as ')
                    summary.append(italic('Escherichia coli '))
                    summary.append(
                        'based on 16S sequence and the presence of marker gene '
                    )
                    summary.append(italic('uidA. '))
                elif not all_uida:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Escherichia coli '))
                    summary.append('as the ')
                    summary.append(italic('uidA '))
                    summary.append('marker gene was not detected. ')

                if all_vt:
                    summary.append(
                        'All strain(s) are confirmed to be VTEC based on detection of probe sequences '
                        'indicating the presence of verotoxin genes.')

            elif genus == 'Listeria':
                if all_mono:
                    summary.append(
                        'The following strains are confirmed to be ')
                    summary.append(italic('Listeria monocytogenes '))
                    summary.append('based on GeneSeekr analysis: ')
                else:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Listeria monocytogenes.'))

            elif genus == 'Salmonella':
                if all_enterica:
                    summary.append(
                        'The following strains are confirmed to be ')
                    summary.append(italic('Salmonella enterica '))
                    summary.append('based on GeneSeekr analysis: ')
                else:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Salmonella enterica.'))

        # ESCHERICHIA TABLE
        if genus == 'Escherichia':
            genesippr_table_columns = (
                bold('ID'),
                bold(pl.NoEscape(r'uidA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'Serotype')),
                bold(pl.NoEscape(r'Verotoxin Profile')),
                bold(pl.NoEscape(r'eae{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(
                        pl.Tabular(table_spec='|c|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        lsts_id = df.loc[df['SeqID'] ==
                                         sample_id]['SampleName'].values[0]

                        # Genus (pulled from 16S)
                        genus = df.loc[df['SeqID'] ==
                                       sample_id]['Genus'].values[0]

                        # Serotype
                        serotype = df.loc[df['SeqID'] == sample_id][
                            'E_coli_Serotype'].values[0]

                        # Remove % identity
                        fixed_serotype = remove_bracketed_values(serotype)

                        # Verotoxin
                        verotoxin = df.loc[df['SeqID'] == sample_id][
                            'Vtyper_Profile'].values[0]

                        # MLST/rMLST
                        mlst = str(df.loc[df['SeqID'] == sample_id]
                                   ['MLST_Result'].values[0]).replace(
                                       '-', 'New')
                        rmlst = str(df.loc[df['SeqID'] == sample_id]
                                    ['rMLST_Result'].values[0]).replace(
                                        '-', 'New')

                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]

                        (uida, eae) = '-', '-'
                        if 'uidA' in marker_list:
                            uida = '+'
                        if 'eae' in marker_list:
                            eae = '+'

                        table.add_row((lsts_id, uida, fixed_serotype,
                                       verotoxin, eae, mlst, rmlst))
                    table.add_hline()

                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # LISTERIA TABLE
        if genus == 'Listeria':
            genesippr_table_columns = (
                bold('ID'),
                bold(pl.NoEscape(r'IGS{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'hlyA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'inlJ{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        lsts_id = df.loc[df['SeqID'] ==
                                         sample_id]['SampleName'].values[0]

                        # Genus
                        genus = df.loc[df['SeqID'] ==
                                       sample_id]['Genus'].values[0]

                        # MLST/rMLST
                        mlst = str(df.loc[df['SeqID'] == sample_id]
                                   ['MLST_Result'].values[0]).replace(
                                       '-', 'New')
                        rmlst = str(df.loc[df['SeqID'] == sample_id]
                                    ['rMLST_Result'].values[0]).replace(
                                        '-', 'New')

                        # Markers
                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]
                        (igs, hlya, inlj) = '-', '-', '-'
                        if 'IGS' in marker_list:
                            igs = '+'
                        if 'hlyA' in marker_list:
                            hlya = '+'
                        if 'inlJ' in marker_list:
                            inlj = '+'

                        table.add_row((lsts_id, igs, hlya, inlj, mlst, rmlst))
                    table.add_hline()
                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # SALMONELLA TABLE
        if genus == 'Salmonella':
            genesippr_table_columns = (
                bold('ID'),
                bold(
                    pl.NoEscape(
                        r'Serovar{\footnotesize \textsuperscript {a}}')),
                bold(
                    pl.NoEscape(
                        r'Serogroup{\footnotesize \textsuperscript {a,b}}')),
                bold(pl.NoEscape(r'H1{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'H2{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'invA{\footnotesize \textsuperscript {b}}')),
                bold(pl.NoEscape(r'stn{\footnotesize \textsuperscript {b}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        lsts_id = df.loc[df['SeqID'] ==
                                         sample_id]['SampleName'].values[0]

                        # MLST/rMLST
                        mlst = str(df.loc[df['SeqID'] == sample_id]
                                   ['MLST_Result'].values[0]).replace(
                                       '-', 'New')
                        rmlst = str(df.loc[df['SeqID'] == sample_id]
                                    ['rMLST_Result'].values[0]).replace(
                                        '-', 'New')

                        # Serovar
                        serovar = df.loc[df['SeqID'] ==
                                         sample_id]['SISTR_serovar'].values[0]

                        # SISTR Serogroup, H1, H2
                        sistr_serogroup = df.loc[df['SeqID'] == sample_id][
                            'SISTR_serogroup'].values[0]
                        sistr_h1 = df.loc[df['SeqID'] == sample_id][
                            'SISTR_h1'].values[0].strip(';')
                        sistr_h2 = df.loc[df['SeqID'] == sample_id][
                            'SISTR_h2'].values[0].strip(';')

                        # Markers
                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]
                        (inva, stn) = '-', '-'
                        if 'invA' in marker_list:
                            inva = '+'
                        if 'stn' in marker_list:
                            stn = '+'

                        table.add_row(
                            (lsts_id, serovar, sistr_serogroup, sistr_h1,
                             sistr_h2, inva, stn, mlst, rmlst))
                    table.add_hline()

                create_caption(
                    genesippr_section, 'a',
                    "Predictions conducted using SISTR "
                    "(Salmonella In Silico Typing Resource)")
                create_caption(
                    genesippr_section, 'b', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # SEQUENCE TABLE
        sequence_quality_columns = (
            bold('ID'),
            bold(pl.NoEscape(r'Total Length')),
            bold(pl.NoEscape(r'Coverage')),
            bold(pl.NoEscape(r'GDCS')),
            bold(pl.NoEscape(r'Pass/Fail')),
        )

        with doc.create(
                pl.Subsection('Sequence Quality Metrics', numbering=False)):
            with doc.create(pl.Tabular('|c|c|c|c|c|')) as table:
                # Header
                table.add_hline()
                table.add_row(sequence_quality_columns)

                # Rows
                for sample_id, df in metadata_reports.items():
                    table.add_hline()

                    # Grab values
                    lsts_id = df.loc[df['SeqID'] ==
                                     sample_id]['SampleName'].values[0]
                    total_length = df.loc[df['SeqID'] ==
                                          sample_id]['TotalLength'].values[0]
                    average_coverage_depth = df.loc[df['SeqID'] == sample_id][
                        'AverageCoverageDepth'].values[0]

                    # Fix coverage
                    average_coverage_depth = format(
                        float(str(average_coverage_depth).replace('X', '')),
                        '.0f')
                    average_coverage_depth = str(average_coverage_depth) + 'X'

                    # Matches
                    matches = gdcs_dict[sample_id][0]

                    passfail = gdcs_dict[sample_id][1]
                    if passfail == '+':
                        passfail = 'Pass'
                    elif passfail == '-':
                        passfail = 'Fail'

                    # Add row
                    table.add_row((lsts_id, total_length,
                                   average_coverage_depth, matches, passfail))
                table.add_hline()

        # PIPELINE METADATA TABLE
        pipeline_metadata_columns = (bold('ID'), bold('Seq ID'),
                                     bold('Pipeline Version'),
                                     bold('Database Version'))

        with doc.create(pl.Subsection('Pipeline Metadata', numbering=False)):
            with doc.create(pl.Tabular('|c|c|c|c|')) as table:
                # Header
                table.add_hline()
                table.add_row(pipeline_metadata_columns)

                # Rows
                for sample_id, df in metadata_reports.items():
                    table.add_hline()

                    # ID
                    lsts_id = df.loc[df['SeqID'] ==
                                     sample_id]['SampleName'].values[0]

                    # Pipeline version
                    pipeline_version = df.loc[
                        df['SeqID'] == sample_id]['PipelineVersion'].values[0]
                    database_version = pipeline_version

                    # Add row
                    table.add_row((lsts_id, sample_id, pipeline_version,
                                   database_version))

                table.add_hline()

        # 'VERIFIED BY' FIELD
        with doc.create(pl.Subsubsection('Verified by:', numbering=False)):
            with doc.create(Form()):
                doc.append(pl.Command('noindent'))
                doc.append(
                    pl.Command('TextField',
                               options=[
                                   "name=verifiedbybox", "multiline=false",
                                   pl.NoEscape("bordercolor=0 0 0"),
                                   pl.NoEscape("width=2.5in"), "height=0.3in"
                               ],
                               arguments=''))

    # OUTPUT PDF FILE
    pdf_file = os.path.join(work_dir,
                            '{}_{}_{}'.format(report_id, genus, date))

    try:
        doc.generate_pdf(pdf_file, clean_tex=False)
    except:
        pass

    pdf_file += '.pdf'
    return pdf_file
コード例 #8
0
def generate_roga(seq_list, genus, lab, source):
    """
    Generates PDF ROGA
    :param seq_list: List of OLC Seq IDs
    :param genus: Expected Genus for samples (Salmonella, Listeria, or Escherichia)
    :param lab: ID for lab report is being generated for
    :param source: string input for source that strains were derived from, i.e. 'ground beef'
    """

    # Grab combinedMetadata dataframes for each requested Seq ID
    metadata_reports = extract_report_data.get_combined_metadata(seq_list)

    # Date setup
    date = datetime.today().strftime('%Y-%m-%d')
    year = datetime.today().strftime('%Y')

    # Grab GDCS data for each requested Seq ID
    gdcs_reports = extract_report_data.get_gdcs(seq_list)
    gdcs_dict = extract_report_data.generate_gdcs_dict(gdcs_reports)

    # Page setup
    geometry_options = {
        "tmargin": "2cm",
        "lmargin": "1.8cm",
        "rmargin": "1.8cm",
        "headsep": "1cm"
    }

    doc = pl.Document(page_numbers=False, geometry_options=geometry_options)

    header = produce_header_footer()

    doc.preamble.append(header)
    doc.change_document_style("header")

    # DATABASE HANDLING
    report_id = update_db(date=date,
                          year=year,
                          genus=genus,
                          lab=lab,
                          source=source)

    # SECOND VALIDATION SCREEN
    if genus == 'Escherichia':
        validated_ecoli_dict = extract_report_data.validate_ecoli(
            seq_list, metadata_reports)
        vt_list = []
        uida_list = []

        for key, value in validated_ecoli_dict.items():
            ecoli_uida_present = validated_ecoli_dict[key][0]
            ecoli_vt_present = validated_ecoli_dict[key][1]

            uida_list.append(ecoli_uida_present)
            vt_list.append(ecoli_vt_present)

            if not ecoli_uida_present:
                print(
                    'WARNING: uidA not present for {}. Cannot confirm E. coli.'
                    .format(key))
            if not ecoli_vt_present:
                print(
                    'WARNING: vt marker not detected for {}. Cannot confirm strain is verotoxigenic.'
                    .format(key))

        all_uida = False
        if False not in uida_list:
            all_uida = True

        all_vt = False
        if False not in vt_list:
            all_vt = True

    elif genus == 'Listeria':
        validated_listeria_dict = extract_report_data.validate_mash(
            seq_list, metadata_reports, 'Listeria monocytogenes')
        mono_list = []
        for key, value in validated_listeria_dict.items():
            mono_list.append(value)

        if False not in mono_list:
            all_mono = True
        else:
            all_mono = False

    elif genus == 'Salmonella':
        validated_salmonella_dict = extract_report_data.validate_mash(
            seq_list, metadata_reports, 'Salmonella enterica')
        enterica_list = []
        for key, value in validated_salmonella_dict.items():
            enterica_list.append(value)

        if False not in enterica_list:
            all_enterica = True
        else:
            all_enterica = False

    # DOCUMENT BODY/CREATION
    with doc.create(
            pl.Section('Report of Genomic Analysis: ' + genus,
                       numbering=False)):

        # REPORT ID
        doc.append(bold('Report ID: '))
        doc.append(report_id)

        # REPORTING LAB
        doc.append(bold('\nReporting laboratory: '))
        doc.append(lab)
        doc.append('\n\n')

        # LAB SUMMARY
        with doc.create(pl.Tabular('lcr', booktabs=True)) as table:
            table.add_row(bold('Laboratory'), bold('Address'), bold('Tel #'))
            table.add_row(lab, lab_info[lab][0], lab_info[lab][1])

        # TEXT SUMMARY
        with doc.create(
                pl.Subsection('Identification Summary',
                              numbering=False)) as summary:

            summary.append(
                'Whole-genome sequencing analysis was conducted on {} presumptive '
                .format(len(metadata_reports)))
            summary.append(italic('{} '.format(genus)))

            if len(metadata_reports) == 1:
                summary.append('strain isolated from {}. '.format(source))
            else:
                summary.append('strains isolated from {}. '.format(source))

            if genus == 'Escherichia':
                if all_uida:
                    summary.append(
                        'All of the following strains are confirmed as ')
                    summary.append(italic('Escherichia coli '))
                    summary.append(
                        'based on 16S sequence and the presence of marker gene '
                    )
                    summary.append(italic('uidA. '))
                elif not all_uida:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Escherichia coli '))
                    summary.append('as the ')
                    summary.append(italic('uidA '))
                    summary.append('marker gene was not detected. ')

                if all_vt:
                    summary.append(
                        'All strains are confirmed to be verotoxigenic based on presence of the '
                    )
                    summary.append(italic('vt '))
                    summary.append('marker.')

            elif genus == 'Listeria':
                if all_mono:
                    summary.append(
                        'All of the following strains are confirmed to be ')
                    summary.append(italic('Listeria monocytogenes '))
                    summary.append('based on GeneSeekr analysis. ')
                else:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Listeria monocytogenes.'))

            elif genus == 'Salmonella':
                if all_enterica:
                    summary.append(
                        'All of the following strains are confirmed to be ')
                    summary.append(italic('Salmonella enterica '))
                    summary.append('based on GeneSeekr analysis. ')
                else:
                    summary.append(
                        'Some of the following strains could not be confirmed to be '
                    )
                    summary.append(italic('Salmonella enterica.'))

        # ESCHERICHIA TABLE
        if genus == 'Escherichia':
            genesippr_table_columns = (
                bold('LSTS ID'),
                bold(pl.NoEscape(r'uidA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'Serotype')),
                bold(pl.NoEscape(r'Verotoxin Profile')),
                bold(pl.NoEscape(r'eae{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        lsts_id = df.loc[df['SeqID'] ==
                                         sample_id]['SampleName'].values[0]

                        # Genus (pulled from 16S)
                        genus = df.loc[df['SeqID'] ==
                                       sample_id]['Genus'].values[0]

                        # Serotype
                        serotype = df.loc[df['SeqID'] == sample_id][
                            'E_coli_Serotype'].values[0]

                        # Remove % identity
                        fixed_serotype = remove_bracketed_values(serotype)

                        # Verotoxin
                        verotoxin = df.loc[df['SeqID'] == sample_id][
                            'Vtyper_Profile'].values[0]

                        # MLST/rMLST
                        mlst = df.loc[df['SeqID'] ==
                                      sample_id]['MLST_Result'].values[0]
                        rmlst = df.loc[df['SeqID'] == sample_id][
                            'rMLST_Result'].values[0].replace('-', 'New')

                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]

                        (uida, eae) = '-', '-'
                        if 'uidA' in marker_list:
                            uida = '+'
                        if 'eae' in marker_list:
                            eae = '+'

                        table.add_row((lsts_id, uida, fixed_serotype,
                                       verotoxin, eae, mlst, rmlst))
                    table.add_hline()

                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # LISTERIA TABLE
        if genus == 'Listeria':
            genesippr_table_columns = (
                bold('LSTS ID'),
                bold(pl.NoEscape(r'IGS{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'hlyA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'inlJ{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        lsts_id = df.loc[df['SeqID'] ==
                                         sample_id]['SampleName'].values[0]

                        # Genus
                        genus = df.loc[df['SeqID'] ==
                                       sample_id]['Genus'].values[0]

                        # MLST/rMLST
                        mlst = df.loc[df['SeqID'] ==
                                      sample_id]['MLST_Result'].values[0]
                        rmlst = df.loc[df['SeqID'] == sample_id][
                            'rMLST_Result'].values[0].replace('-', 'New')

                        # Markers
                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]
                        (igs, hlya, inlj) = '-', '-', '-'
                        if 'IGS' in marker_list:
                            igs = '+'
                        if 'hlyA' in marker_list:
                            hlya = '+'
                        if 'inlJ' in marker_list:
                            inlj = '+'

                        table.add_row((lsts_id, igs, hlya, inlj, mlst, rmlst))
                    table.add_hline()
                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # SALMONELLA TABLE
        if genus == 'Salmonella':
            genesippr_table_columns = (
                bold('LSTS ID'),
                bold(pl.NoEscape(r'Serovar')),
                bold(
                    pl.NoEscape(
                        r'Serogroup{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'H1')),
                bold(pl.NoEscape(r'H2')),
                bold(pl.NoEscape(r'invA{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'stn{\footnotesize \textsuperscript {a}}')),
                bold(pl.NoEscape(r'MLST')),
                bold(pl.NoEscape(r'rMLST')),
            )

            with doc.create(
                    pl.Subsection('GeneSeekr Analysis',
                                  numbering=False)) as genesippr_section:
                with doc.create(pl.Tabular('|c|c|c|c|c|c|c|c|c|')) as table:
                    # Header
                    table.add_hline()
                    table.add_row(genesippr_table_columns)

                    # Rows
                    for sample_id, df in metadata_reports.items():
                        table.add_hline()

                        # ID
                        lsts_id = df.loc[df['SeqID'] ==
                                         sample_id]['SampleName'].values[0]

                        # MLST/rMLST
                        mlst = df.loc[df['SeqID'] ==
                                      sample_id]['MLST_Result'].values[0]
                        rmlst = df.loc[df['SeqID'] == sample_id][
                            'rMLST_Result'].values[0].replace('-', 'New')

                        # Serovar
                        serovar = df.loc[df['SeqID'] ==
                                         sample_id]['SISTR_serovar'].values[0]

                        # SISTR Serogroup, H1, H2
                        sistr_serogroup = df.loc[df['SeqID'] == sample_id][
                            'SISTR_serogroup'].values[0]
                        sistr_h1 = df.loc[df['SeqID'] == sample_id][
                            'SISTR_h1'].values[0].strip(';')
                        sistr_h2 = df.loc[df['SeqID'] == sample_id][
                            'SISTR_h2'].values[0].strip(';')

                        # Markers
                        marker_list = df.loc[df['SeqID'] == sample_id][
                            'GeneSeekr_Profile'].values[0]
                        (inva, stn) = '-', '-'
                        if 'invA' in marker_list:
                            inva = '+'
                        if 'stn' in marker_list:
                            stn = '+'

                        table.add_row(
                            (lsts_id, serovar, sistr_serogroup, sistr_h1,
                             sistr_h2, inva, stn, mlst, rmlst))
                    table.add_hline()

                create_caption(
                    genesippr_section, 'a', "+ indicates marker presence : "
                    "- indicates marker was not detected")

        # SEQUENCE QUALITY METRICS
        sequence_quality_columns = (
            bold('LSTS ID'),
            bold(pl.NoEscape(r'Total Length')),
            bold(pl.NoEscape(r'Coverage')),
            bold(pl.NoEscape(r'GDCS')),
            bold(pl.NoEscape(r'Pass/Fail')),
        )

        # Create the sequence table
        with doc.create(
                pl.Subsection('Sequence Quality Metrics', numbering=False)):
            with doc.create(pl.Tabular('|c|c|c|c|c|')) as table:
                # Header
                table.add_hline()
                table.add_row(sequence_quality_columns)

                # Rows
                for sample_id, df in metadata_reports.items():
                    table.add_hline()

                    # Grab values
                    lsts_id = df.loc[df['SeqID'] ==
                                     sample_id]['SampleName'].values[0]
                    total_length = df.loc[df['SeqID'] ==
                                          sample_id]['TotalLength'].values[0]
                    average_coverage_depth = df.loc[df['SeqID'] == sample_id][
                        'AverageCoverageDepth'].values[0]

                    # Fix coverage
                    average_coverage_depth = format(
                        float(average_coverage_depth.replace('X', '')), '.0f')
                    average_coverage_depth = str(average_coverage_depth) + 'X'

                    # Matches
                    matches = gdcs_dict[sample_id][0]

                    passfail = gdcs_dict[sample_id][1]
                    if passfail == '+':
                        passfail = 'Pass'
                    elif passfail == '-':
                        passfail = 'Fail'

                    # Add row
                    table.add_row((lsts_id, total_length,
                                   average_coverage_depth, matches, passfail))
                table.add_hline()

        # Pipeline metadata table
        pipeline_metadata_columns = (bold('LSTS ID'), bold('Seq ID'),
                                     bold('Pipeline Version'),
                                     bold('Database Version'))

        with doc.create(pl.Subsection('Pipeline Metadata', numbering=False)):
            with doc.create(pl.Tabular('|c|c|c|c|')) as table:
                # Header
                table.add_hline()
                table.add_row(pipeline_metadata_columns)

                # Rows
                for sample_id, df in metadata_reports.items():
                    table.add_hline()

                    # LSTS ID
                    lsts_id = df.loc[df['SeqID'] ==
                                     sample_id]['SampleName'].values[0]

                    # Pipeline version
                    pipeline_version = df.loc[
                        df['SeqID'] == sample_id]['PipelineVersion'].values[0]
                    database_version = pipeline_version  # These have been harmonized
                    # database_version = df.loc[df['SeqID'] == sample_id]['DatabaseVersion'].values[0]

                    # Add row
                    table.add_row((lsts_id, sample_id, pipeline_version,
                                   database_version))

                table.add_hline()

        # VERIFIED BY
        with doc.create(pl.Subsubsection('Verified by:', numbering=False)):
            with doc.create(Form()):
                doc.append(pl.Command('noindent'))
                doc.append(
                    pl.Command('TextField',
                               options=[
                                   "name=multilinetextbox", "multiline=false",
                                   pl.NoEscape("bordercolor=0 0 0"),
                                   pl.NoEscape("width=2.5in"), "height=0.3in"
                               ],
                               arguments=''))

    doc.generate_pdf('{}_{}_{}'.format(report_id, genus, date),
                     clean_tex=False)
コード例 #9
0
ファイル: KingAltmann.py プロジェクト: SboRI/KingAltman
    def report(self, outfile=None):
        class AllTT(Environment):
            packages = [Package('alltt')]
            escape = False
            content_separator = "\n"

        class Amsmath(Environment):
            packages = [Package('amsmath')]
            escape = False
            content_separator = "\n"

        class Align(Environment):
            packages = [Package('amsmath')]
            escape = False
            content_separator = "\n"

        class Breqn(Environment):
            packages = [Package('breqn')]
            escape = False
            content_separator = "\n"

        def equation(numbering=True):
            numbering = "" if numbering else "*"
            eq = Amsmath()
            eq._latex_name = "equation" + numbering
            return eq

        def dmath(numbering=True):
            numbering = "" if numbering else "*"
            eq = Breqn()
            eq._latex_name = "dmath" + numbering
            return eq

        align = Align()
        align_s = Align()
        align_s._latex_name = "align*"

        doc = pylatex.Document('article')
        doc.packages.append(Package('booktabs'))
        with doc.create(pylatex.Section("Results")):
            res = "Product forming complex\n"
            doc.append(res)
            dp_dt = equation(numbering=False)
            producing_terms = "+".join([
                e.as_latex() + r.as_latex()
                for e, r in self._product_forming_complex
            ])
            consuming_terms = "-".join([
                e.as_latex() + r.as_latex()
                for e, r in self._product_consuming_complex
            ])
            res = f"\\frac{{dP}}{{dT}} = \\frac{{{producing_terms}-{consuming_terms}}}{{\\sum}}"
            dp_dt.append(res)
            doc.append(dp_dt)
            doc.append("Simplifications:\n")
            rates = equation(numbering=False)
            zero_rates = ",".join([sympy.latex(x)
                                   for x in self._null_rates]) + " = 0"
            rates.append(zero_rates)
            doc.append(rates)
            doc.append("Substitutions")
            subs = [
                f'{sympy.latex(x[0])} = {sympy.latex(x[1])}'
                for x in self._substitutions
            ]
            for el in subs:
                term = equation(numbering=False)
                term.append(el)
                doc.append(term)
            doc.append("Resulting equation")
            eq_ = equation(numbering=False)
            eq = f"\\frac{{dP}}{{dT}} = v = \\frac{{N}}{{D}}"
            eq_.append(eq)
            doc.append(eq_)
            doc.append("where")
            n, d = sympy.fraction(self.substitute())
            eq = dmath(numbering=False)
            eq.append("N = " + sympy.latex(n))
            doc.append(eq)
            doc.append("and")
            eq = dmath(numbering=False)
            eq.append("D = " + sympy.latex(d))
            doc.append(eq)
        with doc.create(pylatex.Section("Full report")):
            with doc.create(pylatex.Subsection("Input data")):
                doc.append(f"Input file name: ")
                with doc.create(AllTT()):
                    doc.append(f'{self._report["infile"]}')

                doc.append(f"File contents:")

                with doc.create(AllTT()):

                    doc.append(self._report["input"])

            with doc.create(pylatex.Subsection("Parsed reactions")):
                txt = "Reactions after parsing: \n"
                doc.append(txt)
                with doc.create(align_s):
                    for el in self._report["Reactions"]:
                        doc.append(el + "\\\\")

            with doc.create(pylatex.Subsection("Linear graph matrix")):
                table = []
                for el in self._report["lin_graph_matrix"]:
                    table.append(map(lambda x: x.as_latex() if x else "", el))
                matrix = DataFrame(table).as_matrix()
                latex_matrix = pylatex.Matrix(matrix, mtype="b")
                doc.append(pylatex.Math(data=[latex_matrix]))

            with doc.create(pylatex.Subsection("Kinetic matrix")):
                table = []
                for el in self._report["kin_matrix"]:
                    table.append(map(lambda x: x.as_latex() if x else "", el))
                matrix = DataFrame(table).as_matrix()
                latex_matrix = pylatex.Matrix(matrix, mtype="b")
                doc.append(pylatex.Math(data=[latex_matrix]))

            with doc.create(pylatex.Subsection("King-Altman Patterns")):
                table = []
                for el in self._report["kaPatterns"]:
                    table.append(
                        map(lambda x: x.as_latex(add_math_mode=True), el))
                table = DataFrame(table).to_latex(escape=False, header=False)
                doc.append(pylatex.NoEscape(table))

            #Type of self._report["directed_patterns"] = List[[Enzymestate, 2dMatrix_for_enzymestate]]
            with doc.create(pylatex.Subsection("Directed Patterns")):

                for el in self._report["directed_patterns"]:
                    table = []
                    with doc.create(
                            pylatex.Subsubsection(
                                f"Directed Pattern for {el[0]}")):
                        for list_of_reac in el[1]:
                            table.append([
                                y.as_latex(add_math_mode=True)
                                for y in list_of_reac
                            ])
                        #table.append(list(map(lambda x: list(map(lambda y: y.as_latex(add_math_mode=True), x)), el[1])))
                        la_table = DataFrame(table).to_latex(escape=False,
                                                             header=False)

                        doc.append(pylatex.NoEscape(la_table))

        if not outfile:
            outfile = "KingAltman sln of" + self._report["infile"]
        doc.generate_pdf(sys.path[0] + "\\" + outfile,
                         clean_tex=False,
                         compiler='pdflatex')
        print("generated outfile")