コード例 #1
0
    def get_train_sgd(self):

        cost = MethodCost('cost_from_X')
        #cost = self.get_costs()
        num_train_batch = (self.ntrain/self.batch_size)
        print "num training batches:", num_train_batch

        termination_criterion = self.get_terminations()

        monitoring_dataset = {}
        for dataset_id in self.state.monitoring_dataset:
            if dataset_id == 'test' and self.test_ddm is not None:
                monitoring_dataset['test'] = self.test_ddm
            elif dataset_id == 'valid' and self.valid_ddm is not None:
                monitoring_dataset['valid'] = self.valid_ddm
            else:
                monitoring_dataset = None
            
        return SGD( learning_rate=self.state.learning_rate,
                    batch_size=self.state.batch_size,
                    cost=cost,
                    batches_per_iter=num_train_batch,
                    monitoring_dataset=monitoring_dataset,
                    termination_criterion=termination_criterion,
                    init_momentum=self.state.init_momentum,
                    train_iteration_mode=self.state.train_iteration_mode)
コード例 #2
0
ファイル: main.py プロジェクト: hycis/conditional_computation
def model1():
    #pdb.set_trace()
    # train set X has dim (60,000, 784), y has dim (60,000, 10)
    train_set = MNIST(which_set='train', one_hot=True)
    # test set X has dim (10,000, 784), y has dim (10,000, 10)
    valid_set = MNIST(which_set='test', one_hot=True)
    test_set = MNIST(which_set='test', one_hot=True)

    #import pdb
    #pdb.set_trace()
    #print train_set.X.shape[1]

    # =====<Create the MLP Model>=====

    h2_layer = NoisyRELU(layer_name='h1',
                         sparse_init=15,
                         noise_factor=5,
                         dim=1000,
                         desired_active_rate=0.2,
                         bias_factor=20,
                         max_col_norm=1)
    #h2_layer = RectifiedLinear(layer_name='h2', dim=100, sparse_init=15, max_col_norm=1)
    #print h1_layer.get_params()
    #h2 = RectifiedLinear(layer_name='h2', dim=500, sparse_init=15, max_col_norm=1)
    y_layer = Softmax(layer_name='y', n_classes=10, irange=0., max_col_norm=1)

    mlp = MLP(batch_size=200,
              input_space=VectorSpace(dim=train_set.X.shape[1]),
              layers=[h2_layer, y_layer])

    # =====<Create the SGD algorithm>=====
    sgd = SGD(init_momentum=0.1,
              learning_rate=0.01,
              monitoring_dataset={'valid': valid_set},
              cost=MethodCost('cost_from_X'),
              termination_criterion=MonitorBased(
                  channel_name='valid_y_misclass', prop_decrease=0.001, N=50))
    #sgd.setup(model=mlp, dataset=train_set)

    # =====<Extensions>=====
    ext = [MomentumAdjustor(start=1, saturate=10, final_momentum=0.9)]

    # =====<Create Training Object>=====
    save_path = './mlp_model1.pkl'
    train_obj = Train(dataset=train_set,
                      model=mlp,
                      algorithm=sgd,
                      extensions=ext,
                      save_path=save_path,
                      save_freq=0)
    #train_obj.setup_extensions()

    #import pdb
    #pdb.set_trace()
    train_obj.main_loop()

    # =====<Run the training>=====
    '''
コード例 #3
0
ファイル: run_all.py プロジェクト: baucheng/facedet
def main(argv):

    try:
        opts, args = getopt.getopt(argv, '')
        student_yaml = args[0]
    except getopt.GetoptError:
        usage()
        sys.exit(2)

    #
    # TRAIN WITH TARGETS
    #

    # Load student
    with open(student_yaml, "r") as sty:
        student = yaml_parse.load(sty)

    # Remove teacher decay over epoch if there is one
    for ext in range(len(student.extensions)):
        if isinstance(student.extensions[ext], TeacherDecayOverEpoch):
            del student.extensions[ext]

    student.algorithm.cost = MethodCost(method='cost_from_X')

    # Change save paths
    for ext in range(len(student.extensions)):
        if isinstance(student.extensions[ext], MonitorBasedSaveBest):
            student.extensions[ext].save_path = student.save_path[
                0:-4] + "_noteacher_best.pkl"
    student.save_path = student.save_path[0:-4] + "_noteacher.pkl"

    student.main_loop()

    #
    # TRAIN WITH TEACHER (TOP LAYER)
    #

    # Load student
    with open(student_yaml, "r") as sty:
        student = yaml_parse.load(sty)

    # Change save paths
    for ext in range(len(student.extensions)):
        if isinstance(student.extensions[ext], MonitorBasedSaveBest):
            student.extensions[
                ext].save_path = student.save_path[0:-4] + "_toplayer_best.pkl"
    student.save_path = student.save_path[0:-4] + "_toplayer.pkl"

    student.main_loop()

    #
    # TRAIN WITH HINTS
    #

    hints.main([student_yaml, 'conv'])
コード例 #4
0
ファイル: main.py プロジェクト: hycis/conditional_computation
def model2():
    #pdb.set_trace()
    # train set X has dim (60,000, 784), y has dim (60,000, 10)
    train_set = MNIST(which_set='train', one_hot=True)
    # test set X has dim (10,000, 784), y has dim (10,000, 10)
    test_set = MNIST(which_set='test', one_hot=True)

    # =====<Create the MLP Model>=====

    h1_layer = RectifiedLinear(layer_name='h1', dim=1000, irange=0.5)
    #print h1_layer.get_params()
    h2_layer = RectifiedLinear(layer_name='h2',
                               dim=1000,
                               sparse_init=15,
                               max_col_norm=1)
    y_layer = Softmax(layer_name='y',
                      n_classes=train_set.y.shape[1],
                      irange=0.5)

    mlp = MLP(batch_size=100,
              input_space=VectorSpace(dim=train_set.X.shape[1]),
              layers=[h1_layer, h2_layer, y_layer])

    # =====<Create the SGD algorithm>=====
    sgd = SGD(batch_size=100,
              init_momentum=0.1,
              learning_rate=0.01,
              monitoring_dataset={
                  'valid': train_set,
                  'test': test_set
              },
              cost=SumOfCosts(costs=[
                  MethodCost('cost_from_X'),
                  WeightDecay(coeffs=[0.00005, 0.00005, 0.00005])
              ]),
              termination_criterion=MonitorBased(
                  channel_name='valid_y_misclass', prop_decrease=0.0001, N=5))
    #sgd.setup(model=mlp, dataset=train_set)

    # =====<Extensions>=====
    ext = [MomentumAdjustor(start=1, saturate=10, final_momentum=0.99)]

    # =====<Create Training Object>=====
    save_path = './mlp_model2.pkl'
    train_obj = Train(dataset=train_set,
                      model=mlp,
                      algorithm=sgd,
                      extensions=ext,
                      save_path=save_path,
                      save_freq=0)
    #train_obj.setup_extensions()

    train_obj.main_loop()
コード例 #5
0
ファイル: main.py プロジェクト: hycis/conditional_computation
def model3():
    #pdb.set_trace()
    # train set X has dim (60,000, 784), y has dim (60,000, 10)
    train_set = SVHN_On_Memory(which_set='train')
    # test set X has dim (10,000, 784), y has dim (10,000, 10)
    test_set = SVHN_On_Memory(which_set='test')

    # =====<Create the MLP Model>=====

    h1_layer = NoisyRELU(layer_name='h1',
                         dim=2000,
                         threshold=5,
                         sparse_init=15,
                         max_col_norm=1)
    #print h1_layer.get_params()
    #h2_layer = NoisyRELU(layer_name='h2', dim=100, threshold=15, sparse_init=15, max_col_norm=1)

    y_layer = Softmax(layer_name='y',
                      n_classes=train_set.y.shape[1],
                      irange=0.5)

    mlp = MLP(batch_size=64,
              input_space=VectorSpace(dim=train_set.X.shape[1]),
              layers=[h1_layer, y_layer])

    # =====<Create the SGD algorithm>=====
    sgd = SGD(batch_size=64,
              init_momentum=0.1,
              learning_rate=0.01,
              monitoring_dataset={
                  'valid': train_set,
                  'test': test_set
              },
              cost=MethodCost('cost_from_X'),
              termination_criterion=MonitorBased(
                  channel_name='valid_y_misclass', prop_decrease=0.001, N=50))
    #sgd.setup(model=mlp, dataset=train_set)

    # =====<Extensions>=====
    ext = [MomentumAdjustor(start=1, saturate=10, final_momentum=0.9)]

    # =====<Create Training Object>=====
    save_path = './mlp_model.pkl'
    train_obj = Train(dataset=train_set,
                      model=mlp,
                      algorithm=sgd,
                      extensions=ext,
                      save_path=save_path,
                      save_freq=10)
    #train_obj.setup_extensions()

    train_obj.main_loop()
コード例 #6
0
ファイル: model_convnet.py プロジェクト: gaoch023/kaggle
def get_trainer(model, trainset, validset, epochs=50):
    monitoring_batches = None if validset is None else 50
    train_algo = SGD(
        batch_size = 200,
        init_momentum = 0.5,
        learning_rate = 0.5,
        monitoring_batches = monitoring_batches,
        monitoring_dataset = validset,
        cost = MethodCost(method='cost_from_X', supervised=1),
        termination_criterion = EpochCounter(epochs),
        update_callbacks = ExponentialDecay(decay_factor=1.0005, min_lr=0.001)
    )
    return Train(model=model, algorithm=train_algo, dataset=trainset, save_freq=0, save_path='epoch', \
            extensions=[MomentumAdjustor(final_momentum=0.95, start=0, saturate=int(epochs*0.8)), ])
コード例 #7
0
from pylearn2.costs.cost import MethodCost
from pylearn2.datasets.mnist import MNIST
from pylearn2.models.mlp import MLP, Sigmoid, Softmax
from pylearn2.train import Train
from pylearn2.training_algorithms.sgd import SGD
from pylearn2.training_algorithms.learning_rule import Momentum, MomentumAdjustor
from pylearn2.termination_criteria import EpochCounter

train_set = MNIST(which_set='train', start=0, stop=50000)
valid_set = MNIST(which_set='train', start=50000, stop=60000)
test_set = MNIST(which_set='test')

model = MLP(nvis=784,
            layers=[Sigmoid(layer_name='h', dim=500, irange=0.01),
                    Softmax(layer_name='y', n_classes=10, irange=0.01)])

algorithm = SGD(batch_size=100, learning_rate=0.01,
                learning_rule=Momentum(init_momentum=0.5),
                monitoring_dataset={'train': train_set,
                                    'valid': valid_set,
                                    'test': test_set},
                cost=MethodCost('cost_from_X'),
                termination_criterion=EpochCounter(10))

train = Train(dataset=train_set, model=model, algorithm=algorithm,
              save_path="mnist_example.pkl", save_freq=1,
              extensions=[MomentumAdjustor(start=5, saturate=6,
                                           final_momentum=0.95)])

train.main_loop()
コード例 #8
0
                         border_mode="full")

h2 = Tanh(dim=200, layer_name="h2", irange=0.1)

h3 = Tanh(dim=200, layer_name="h3", irange=0.1)

y = Softmax(n_classes=2, layer_name="y", irange=0.1)

inputSpace = Conv2DSpace(shape=[cropSize, cropSize], num_channels=3)

model = MLP(layers=[h0, h1, h2, h3, y],
            batch_size=batchSize,
            input_space=inputSpace)

algorithm = SGD(learning_rate=0.01,
                cost=MethodCost("cost_from_X"),
                batch_size=batchSize,
                monitoring_batch_size=batchSize,
                monitoring_dataset={
                    'train': train,
                    'valid': valid
                },
                monitor_iteration_mode="even_batchwise_shuffled_sequential",
                termination_criterion=EpochCounter(max_epochs=200),
                learning_rule=Momentum(init_momentum=0.99),
                train_iteration_mode="even_batchwise_shuffled_sequential")

train = Train(dataset=train,
              model=model,
              algorithm=algorithm,
              save_path="ConvNet4.pkl",