コード例 #1
0
ファイル: test_dbm.py プロジェクト: BloodNg/pylearn2
def test_make_symbolic_state():
    # Tests whether the returned p_sample and h_sample have the right
    # dimensions
    num_examples = 40
    theano_rng = MRG_RandomStreams(2012+11+1)

    visible_layer = BinaryVector(nvis=100)
    rval = visible_layer.make_symbolic_state(num_examples=num_examples,
                                             theano_rng=theano_rng)

    hidden_layer = BinaryVectorMaxPool(detector_layer_dim=500,
                                       pool_size=1,
                                       layer_name='h',
                                       irange=0.05,
                                       init_bias=-2.0)
    p_sample, h_sample = hidden_layer.make_symbolic_state(num_examples=num_examples,
                                                          theano_rng=theano_rng)

    softmax_layer = Softmax(n_classes=10, layer_name='s', irange=0.05)
    h_sample_s = softmax_layer.make_symbolic_state(num_examples=num_examples,
                                                   theano_rng=theano_rng)

    required_shapes = [(40, 100), (40, 500), (40, 500), (40, 10)]
    f = function(inputs=[],
                 outputs=[rval, p_sample, h_sample, h_sample_s])

    for s, r in zip(f(), required_shapes):
        assert s.shape == r
コード例 #2
0
ファイル: test_dbm.py プロジェクト: BloodNg/pylearn2
def test_softmax_make_state():

    # Verifies that BinaryVector.make_state creates
    # a shared variable whose value passes check_multinomial_samples

    n = 5
    num_samples = 1000
    tol = .04

    layer = Softmax(n_classes = n, layer_name = 'y')

    rng = np.random.RandomState([2012, 11, 1, 11])

    z = 3 * rng.randn(n)

    mean = np.exp(z)
    mean /= mean.sum()

    layer.set_biases(z.astype(config.floatX))

    state = layer.make_state(num_examples=num_samples,
            numpy_rng=rng)

    value = state.get_value()

    check_multinomial_samples(value, (num_samples, n), mean, tol)
コード例 #3
0
def test_make_symbolic_state():
    # Tests whether the returned p_sample and h_sample have the right
    # dimensions
    num_examples = 40
    theano_rng = MRG_RandomStreams(2012+11+1)

    visible_layer = BinaryVector(nvis=100)
    rval = visible_layer.make_symbolic_state(num_examples=num_examples,
                                             theano_rng=theano_rng)

    hidden_layer = BinaryVectorMaxPool(detector_layer_dim=500,
                                       pool_size=1,
                                       layer_name='h',
                                       irange=0.05,
                                       init_bias=-2.0)
    p_sample, h_sample = hidden_layer.make_symbolic_state(num_examples=num_examples,
                                                          theano_rng=theano_rng)

    softmax_layer = Softmax(n_classes=10, layer_name='s', irange=0.05)
    h_sample_s = softmax_layer.make_symbolic_state(num_examples=num_examples,
                                                   theano_rng=theano_rng)

    required_shapes = [(40, 100), (40, 500), (40, 500), (40, 10)]
    f = function(inputs=[],
                 outputs=[rval, p_sample, h_sample, h_sample_s])

    for s, r in zip(f(), required_shapes):
        assert s.shape == r
コード例 #4
0
def test_softmax_make_state():

    # Verifies that BinaryVector.make_state creates
    # a shared variable whose value passes check_multinomial_samples

    n = 5
    num_samples = 1000
    tol = .04

    layer = Softmax(n_classes = n, layer_name = 'y')

    rng = np.random.RandomState([2012, 11, 1, 11])

    z = 3 * rng.randn(n)

    mean = np.exp(z)
    mean /= mean.sum()

    layer.set_biases(z.astype(config.floatX))

    state = layer.make_state(num_examples=num_samples,
            numpy_rng=rng)

    value = state.get_value()

    check_multinomial_samples(value, (num_samples, n), mean, tol)
コード例 #5
0
def test_softmax_mf_sample_consistent():

    # A test of the Softmax class
    # Verifies that the mean field update is consistent with
    # the sampling function

    # Since a Softmax layer contains only one random variable
    # (with n_classes possible values) the mean field assumption
    # does not impose any restriction so mf_update simply gives
    # the true expected value of h given v.
    # We can thus use mf_update to compute the expected value
    # of a sample of y conditioned on v, and check that samples
    # drawn using the layer's sample method convert to that
    # value.

    rng = np.random.RandomState([2012, 11, 1, 1154])
    theano_rng = MRG_RandomStreams(2012 + 11 + 1 + 1154)
    num_samples = 1000
    tol = .042

    # Make DBM
    num_vis = rng.randint(1, 11)
    n_classes = rng.randint(1, 11)

    v = BinaryVector(num_vis)
    v.set_biases(rng.uniform(-1., 1., (num_vis, )).astype(config.floatX))

    y = Softmax(n_classes=n_classes, layer_name='y', irange=1.)
    y.set_biases(rng.uniform(-1., 1., (n_classes, )).astype(config.floatX))

    dbm = DBM(visible_layer=v, hidden_layers=[y], batch_size=1, niter=50)

    # Randomly pick a v to condition on
    # (Random numbers are generated via dbm.rng)
    layer_to_state = dbm.make_layer_to_state(1)
    v_state = layer_to_state[v]
    y_state = layer_to_state[y]

    # Infer P(y | v) using mean field
    expected_y = y.mf_update(state_below=v.upward_state(v_state))

    expected_y = expected_y[0, :]

    expected_y = expected_y.eval()

    # copy all the states out into a batch size of num_samples
    cause_copy = sharedX(np.zeros((num_samples, ))).dimshuffle(0, 'x')
    v_state = v_state[0, :] + cause_copy
    y_state = y_state[0, :] + cause_copy

    y_samples = y.sample(state_below=v.upward_state(v_state),
                         theano_rng=theano_rng)

    y_samples = function([], y_samples)()

    check_multinomial_samples(y_samples, (num_samples, n_classes), expected_y,
                              tol)
コード例 #6
0
ファイル: test_dbm.py プロジェクト: BloodNg/pylearn2
def test_softmax_mf_energy_consistent_centering():

    # A test of the Softmax class
    # Verifies that the mean field update is consistent with
    # the energy function when using the centering trick

    # Since a Softmax layer contains only one random variable
    # (with n_classes possible values) the mean field assumption
    # does not impose any restriction so mf_update simply gives
    # the true expected value of h given v.
    # We also know P(h |  v)
    #  = P(h, v) / P( v)
    #  = P(h, v) / sum_h P(h, v)
    #  = exp(-E(h, v)) / sum_h exp(-E(h, v))
    # So we can check that computing P(h | v) with both
    # methods works the same way

    rng = np.random.RandomState([2012,11,1,1131])

    # Make DBM
    num_vis = rng.randint(1,11)
    n_classes = rng.randint(1, 11)

    v = BinaryVector(num_vis, center=True)
    v.set_biases(rng.uniform(-1., 1., (num_vis,)).astype(config.floatX), recenter=True)

    y = Softmax(
            n_classes = n_classes,
            layer_name = 'y',
            irange = 1., center=True)
    y.set_biases(rng.uniform(-1., 1., (n_classes,)).astype(config.floatX), recenter=True)

    dbm = DBM(visible_layer = v,
            hidden_layers = [y],
            batch_size = 1,
            niter = 50)

    # Randomly pick a v to condition on
    # (Random numbers are generated via dbm.rng)
    layer_to_state = dbm.make_layer_to_state(1)
    v_state = layer_to_state[v]
    y_state = layer_to_state[y]

    # Infer P(y | v) using mean field
    expected_y = y.mf_update(
            state_below = v.upward_state(v_state))

    expected_y = expected_y[0, :]

    expected_y = expected_y.eval()

    # Infer P(y | v) using the energy function
    energy = dbm.energy(V = v_state,
            hidden = [y_state])
    unnormalized_prob = T.exp(-energy)
    assert unnormalized_prob.ndim == 1
    unnormalized_prob = unnormalized_prob[0]
    unnormalized_prob = function([], unnormalized_prob)

    def compute_unnormalized_prob(which):
        write_y = np.zeros((n_classes,))
        write_y[which] = 1.

        y_value = y_state.get_value()

        y_value[0, :] = write_y

        y_state.set_value(y_value)

        return unnormalized_prob()

    probs = [compute_unnormalized_prob(idx) for idx in xrange(n_classes)]
    denom = sum(probs)
    probs = [on_prob / denom for on_prob in probs]

    # np.asarray(probs) doesn't make a numpy vector, so I do it manually
    wtf_numpy = np.zeros((n_classes,))
    for i in xrange(n_classes):
        wtf_numpy[i] = probs[i]
    probs = wtf_numpy

    if not np.allclose(expected_y, probs):
        print 'mean field expectation of h:',expected_y
        print 'expectation of h based on enumerating energy function values:',probs
        assert False
コード例 #7
0
ファイル: test_dbm.py プロジェクト: BloodNg/pylearn2
def test_softmax_mf_sample_consistent():

    # A test of the Softmax class
    # Verifies that the mean field update is consistent with
    # the sampling function

    # Since a Softmax layer contains only one random variable
    # (with n_classes possible values) the mean field assumption
    # does not impose any restriction so mf_update simply gives
    # the true expected value of h given v.
    # We can thus use mf_update to compute the expected value
    # of a sample of y conditioned on v, and check that samples
    # drawn using the layer's sample method convert to that
    # value.

    rng = np.random.RandomState([2012,11,1,1154])
    theano_rng = MRG_RandomStreams(2012+11+1+1154)
    num_samples = 1000
    tol = .042

    # Make DBM
    num_vis = rng.randint(1,11)
    n_classes = rng.randint(1, 11)

    v = BinaryVector(num_vis)
    v.set_biases(rng.uniform(-1., 1., (num_vis,)).astype(config.floatX))

    y = Softmax(
            n_classes = n_classes,
            layer_name = 'y',
            irange = 1.)
    y.set_biases(rng.uniform(-1., 1., (n_classes,)).astype(config.floatX))

    dbm = DBM(visible_layer = v,
            hidden_layers = [y],
            batch_size = 1,
            niter = 50)

    # Randomly pick a v to condition on
    # (Random numbers are generated via dbm.rng)
    layer_to_state = dbm.make_layer_to_state(1)
    v_state = layer_to_state[v]
    y_state = layer_to_state[y]

    # Infer P(y | v) using mean field
    expected_y = y.mf_update(
            state_below = v.upward_state(v_state))

    expected_y = expected_y[0, :]

    expected_y = expected_y.eval()

    # copy all the states out into a batch size of num_samples
    cause_copy = sharedX(np.zeros((num_samples,))).dimshuffle(0,'x')
    v_state = v_state[0,:] + cause_copy
    y_state = y_state[0,:] + cause_copy

    y_samples = y.sample(state_below = v.upward_state(v_state), theano_rng=theano_rng)

    y_samples = function([], y_samples)()

    check_multinomial_samples(y_samples, (num_samples, n_classes), expected_y, tol)
コード例 #8
0
def test_softmax_mf_energy_consistent_centering():

    # A test of the Softmax class
    # Verifies that the mean field update is consistent with
    # the energy function when using the centering trick

    # Since a Softmax layer contains only one random variable
    # (with n_classes possible values) the mean field assumption
    # does not impose any restriction so mf_update simply gives
    # the true expected value of h given v.
    # We also know P(h |  v)
    #  = P(h, v) / P( v)
    #  = P(h, v) / sum_h P(h, v)
    #  = exp(-E(h, v)) / sum_h exp(-E(h, v))
    # So we can check that computing P(h | v) with both
    # methods works the same way

    rng = np.random.RandomState([2012,11,1,1131])

    # Make DBM
    num_vis = rng.randint(1,11)
    n_classes = rng.randint(1, 11)

    v = BinaryVector(num_vis, center=True)
    v.set_biases(rng.uniform(-1., 1., (num_vis,)).astype(config.floatX), recenter=True)

    y = Softmax(
            n_classes = n_classes,
            layer_name = 'y',
            irange = 1., center=True)
    y.set_biases(rng.uniform(-1., 1., (n_classes,)).astype(config.floatX), recenter=True)

    dbm = DBM(visible_layer = v,
            hidden_layers = [y],
            batch_size = 1,
            niter = 50)

    # Randomly pick a v to condition on
    # (Random numbers are generated via dbm.rng)
    layer_to_state = dbm.make_layer_to_state(1)
    v_state = layer_to_state[v]
    y_state = layer_to_state[y]

    # Infer P(y | v) using mean field
    expected_y = y.mf_update(
            state_below = v.upward_state(v_state))

    expected_y = expected_y[0, :]

    expected_y = expected_y.eval()

    # Infer P(y | v) using the energy function
    energy = dbm.energy(V = v_state,
            hidden = [y_state])
    unnormalized_prob = T.exp(-energy)
    assert unnormalized_prob.ndim == 1
    unnormalized_prob = unnormalized_prob[0]
    unnormalized_prob = function([], unnormalized_prob)

    def compute_unnormalized_prob(which):
        write_y = np.zeros((n_classes,))
        write_y[which] = 1.

        y_value = y_state.get_value()

        y_value[0, :] = write_y

        y_state.set_value(y_value)

        return unnormalized_prob()

    probs = [compute_unnormalized_prob(idx) for idx in xrange(n_classes)]
    denom = sum(probs)
    probs = [on_prob / denom for on_prob in probs]

    # np.asarray(probs) doesn't make a numpy vector, so I do it manually
    wtf_numpy = np.zeros((n_classes,))
    for i in xrange(n_classes):
        wtf_numpy[i] = probs[i]
    probs = wtf_numpy

    if not np.allclose(expected_y, probs):
        print 'mean field expectation of h:',expected_y
        print 'expectation of h based on enumerating energy function values:',probs
        assert False