def test_adadelta(): """ Make sure that learning_rule.AdaDelta obtains the same parameter values as with a hand-crafted AdaDelta implementation, given a dummy model and learning rate scaler for each parameter. Reference: "AdaDelta: An Adaptive Learning Rate Method", Matthew D. Zeiler. """ # We include a cost other than SumOfParams so that data is actually # queried from the training set, and the expected number of updates # are applied. cost = SumOfCosts([SumOfOneHalfParamsSquared(), (0., DummyCost())]) model = DummyModel(shapes, lr_scalers=scales) dataset = ArangeDataset(1) decay = 0.95 sgd = SGD(cost=cost, learning_rate=learning_rate, learning_rule=AdaDelta(decay), batch_size=1) sgd.setup(model=model, dataset=dataset) state = {} for param in model.get_params(): param_shape = param.get_value().shape state[param] = {} state[param]['g2'] = np.zeros(param_shape) state[param]['dx2'] = np.zeros(param_shape) def adadelta_manual(model, state): inc = [] rval = [] for scale, param in izip(scales, model.get_params()): pstate = state[param] param_val = param.get_value() # begin adadelta pstate['g2'] = decay * pstate['g2'] + (1 - decay) * param_val**2 rms_g_t = np.sqrt(pstate['g2'] + scale * learning_rate) rms_dx_tm1 = np.sqrt(pstate['dx2'] + scale * learning_rate) dx_t = -rms_dx_tm1 / rms_g_t * param_val pstate['dx2'] = decay * pstate['dx2'] + (1 - decay) * dx_t**2 rval += [param_val + dx_t] return rval manual = adadelta_manual(model, state) sgd.train(dataset=dataset) assert all( np.allclose(manual_param, sgd_param.get_value()) for manual_param, sgd_param in izip(manual, model.get_params())) manual = adadelta_manual(model, state) sgd.train(dataset=dataset) assert all( np.allclose(manual_param, sgd_param.get_value()) for manual_param, sgd_param in izip(manual, model.get_params()))
def test_adagrad(): """ Make sure that learning_rule.AdaGrad obtains the same parameter values as with a hand-crafted AdaGrad implementation, given a dummy model and learning rate scaler for each parameter. Reference: "Adaptive subgradient methods for online learning and stochastic optimization", Duchi J, Hazan E, Singer Y. """ # We include a cost other than SumOfParams so that data is actually # queried from the training set, and the expected number of updates # are applied. cost = SumOfCosts([SumOfOneHalfParamsSquared(), (0., DummyCost())]) model = DummyModel(shapes, lr_scalers=scales) dataset = ArangeDataset(1) sgd = SGD(cost=cost, learning_rate=learning_rate, learning_rule=AdaGrad(), batch_size=1) sgd.setup(model=model, dataset=dataset) state = {} for param in model.get_params(): param_shape = param.get_value().shape state[param] = {} state[param]['sg2'] = np.zeros(param_shape) def adagrad_manual(model, state): rval = [] for scale, param in izip(scales, model.get_params()): pstate = state[param] param_val = param.get_value() # begin adadelta pstate['sg2'] += param_val**2 dx_t = -(scale * learning_rate / np.sqrt(pstate['sg2']) * param_val) rval += [param_val + dx_t] return rval manual = adagrad_manual(model, state) sgd.train(dataset=dataset) assert all( np.allclose(manual_param, sgd_param.get_value()) for manual_param, sgd_param in izip(manual, model.get_params())) manual = adagrad_manual(model, state) sgd.train(dataset=dataset) assert all( np.allclose(manual_param, sgd_param.get_value()) for manual_param, sgd_param in izip(manual, model.get_params()))
def test_rmsprop(): """ Make sure that learning_rule.RMSProp obtains the same parameter values as with a hand-crafted RMSProp implementation, given a dummy model and learning rate scaler for each parameter. """ # We include a cost other than SumOfParams so that data is actually # queried from the training set, and the expected number of updates # are applied. cost = SumOfCosts([SumOfOneHalfParamsSquared(), (0., DummyCost())]) scales = [.01, .02, .05, 1., 5.] shapes = [(1, ), (9, ), (8, 7), (6, 5, 4), (3, 2, 2, 2)] model = DummyModel(shapes, lr_scalers=scales) dataset = ArangeDataset(1) learning_rate = .001 decay = 0.90 max_scaling = 1e5 sgd = SGD(cost=cost, learning_rate=learning_rate, learning_rule=RMSProp(decay), batch_size=1) sgd.setup(model=model, dataset=dataset) state = {} for param in model.get_params(): param_shape = param.get_value().shape state[param] = {} state[param]['g2'] = np.zeros(param_shape) def rmsprop_manual(model, state): inc = [] rval = [] epsilon = 1. / max_scaling for scale, param in izip(scales, model.get_params()): pstate = state[param] param_val = param.get_value() # begin rmsprop pstate['g2'] = decay * pstate['g2'] + (1 - decay) * param_val**2 rms_g_t = np.maximum(np.sqrt(pstate['g2']), epsilon) dx_t = -scale * learning_rate / rms_g_t * param_val rval += [param_val + dx_t] return rval manual = rmsprop_manual(model, state) sgd.train(dataset=dataset) assert all( np.allclose(manual_param, sgd_param.get_value()) for manual_param, sgd_param in izip(manual, model.get_params()))
def prepare_adagrad_test(dataset_type='arange', model_type='random'): """ Factor out common code for AdaGrad tests. Parameters ---------- dataset_type : string, optional Can use either `arange` to use an ArangeDataset instance or `zeros` to create an all-zeros DenseDesignMatrix. model_type : string, optional How to initialize the model; `random` will initialize parameters to random values, `zeros` to zero. """ # We include a cost other than SumOfParams so that data is actually # queried from the training set, and the expected number of updates # are applied. cost = SumOfCosts([SumOfOneHalfParamsSquared(), (0., DummyCost())]) model = DummyModel(shapes, lr_scalers=scales, init_type=model_type) if dataset_type == 'arange': dataset = ArangeDataset(1) elif dataset_type == 'zeros': X = np.zeros((1, 1)) X[:, 0] = np.arange(1) dataset = DenseDesignMatrix(X) else: raise ValueError('Unknown value for dataset_type: %s', dataset_type) sgd = SGD(cost=cost, learning_rate=learning_rate, learning_rule=AdaGrad(), batch_size=1) sgd.setup(model=model, dataset=dataset) state = {} for param in model.get_params(): param_shape = param.get_value().shape state[param] = {} state[param]['sg2'] = np.zeros(param_shape) return (cost, model, dataset, sgd, state)