コード例 #1
0
def create_pca(conf, layer, data, model=None):
    """
    Simple wrapper to either load a PCA or train it and save its parameters
    """
    savedir = utils.getboth(layer, conf, 'savedir')
    clsname = layer.get('pca_class', 'CovEigPCA')

    # Guess the filename
    if model is not None:
        if model.endswith('.pkl'):
            filename = os.path.join(savedir, model)
        else:
            filename = os.path.join(savedir, model + '.pkl')
    else:
        filename = os.path.join(savedir, layer['name'] + '.pkl')

    print 'File name : ', filename
    # Try to load the model
    if model is not None:
        print '... loading layer:', clsname
        try:
            return PCA.load(filename)
        except Exception, e:
            print 'Warning: error while loading %s:' % clsname, e.args[0]
            print 'Switching back to training mode.'
コード例 #2
0
def create_pca(conf, layer, data, model=None):
    """
    Simple wrapper to either load a PCA or train it and save its parameters
    """
    savedir = utils.getboth(layer, conf, 'savedir')
    clsname = layer.get('pca_class', 'CovEigPCA')
                   
    # Guess the filename
    if model is not None:
        if model.endswith('.pkl'):
            filename = os.path.join(savedir, model)
        else:
            filename = os.path.join(savedir, model + '.pkl')
    else:
        filename = os.path.join(savedir, layer['name'] + '.pkl')
    
    print 'File name : ',filename                                                                 
    # Try to load the model
    if model is not None:
        print '... loading layer:', clsname
        try:
            return PCA.load(filename)
        except Exception, e:
            print 'Warning: error while loading %s:' % clsname, e.args[0]
            print 'Switching back to training mode.'
コード例 #3
0
def create_ae(conf, layer, data, model=None):
    """
    This function basically train an autoencoder according
    to the parameters in conf, and save the learned model
    """
    savedir = utils.getboth(layer, conf, 'savedir')
    clsname = layer['autoenc_class']

    # Guess the filename
    if model is not None:
        if model.endswith('.pkl'):
            filename = os.path.join(savedir, model)
        else:
            filename = os.path.join(savedir, model + '.pkl')
    else:
        filename = os.path.join(savedir, layer['name'] + '.pkl')

    # Try to load the model
    if model is not None:
        print '... loading layer:', clsname
        try:
            return Autoencoder.load(filename)
        except Exception, e:
            print 'Warning: error while loading %s:' % clsname, e.args[0]
            print 'Switching back to training mode.'
コード例 #4
0
def create_rbm(conf, layer, data, label=None, model=None):
    """
    Loads or trains an RBM.
    """
    savedir = utils.getboth(layer, conf, 'savedir')
    clsname = layer['rbm_class']

    # Guess the filename
    if model is not None:
        if model.endswith('.pkl'):
            filename = os.path.join(savedir, model)
        else:
            filename = os.path.join(savedir, model + '.pkl')
    else:
        filename = os.path.join(savedir, layer['name'] + '.pkl')

    # Try to load the model
    if model is not None:
        print '... trying to load layer:', clsname
        try:
            # This loads and checks that the loaded model is an RBM
            # or subclass
            return RBM.load(filename)
        except Exception, e:
            print 'Warning: error while loading %s from %s:' % (
                clsname, filename), e.args[0]
            print 'Training it instead.'
コード例 #5
0
ファイル: example_pca_da.py プロジェクト: sonu5623/pylearn2
def create_pca(conf, layer, data, model=None):
    """
    Simple wrapper to either load a PCA or train it and save its parameters
    """
    savedir = utils.getboth(layer, conf, "savedir")
    clsname = layer.get("pca_class", "CovEigPCA")

    # Guess the filename
    if model is not None:
        if model.endswith(".pkl"):
            filename = os.path.join(savedir, model)
        else:
            filename = os.path.join(savedir, model + ".pkl")
    else:
        filename = os.path.join(savedir, layer["name"] + ".pkl")

    print "File name : ", filename
    # Try to load the model
    if model is not None:
        print "... loading layer:", clsname
        try:
            return PCA.load(filename)
        except Exception, e:
            print "Warning: error while loading %s:" % clsname, e.args[0]
            print "Switching back to training mode."
コード例 #6
0
def main_train(epochs, batchsize, solution='',sparse_penalty=0,sparsityTarget=0,sparsityTargetPenalty=0):
    
    # Experiment specific arguments
    conf_dataset = {'dataset' : 'avicenna',
                    'expname' : 'dummy', # Used to create the submission file
                    'transfer' : True,
                    'normalize' : True, # (Default = True)
                    'normalize_on_the_fly' : False, # (Default = False)
                    'randomize_valid' : True, # (Default = True)
                    'randomize_test' : True, # (Default = True)
                    'saving_rate': 0, # (Default = 0)
                    'savedir' : './outputs',
                   }
                   
    # First layer = PCA-75 whiten
    pca_layer = {'name' : '1st-PCA',
                 'num_components': 75,
                 'min_variance': -50,
                 'whiten': True,
                 'pca_class' : 'CovEigPCA',
                 # Training properties
                 'proba' : [1, 0, 0],
                 'savedir' : './outputs',
                }
                                                                                                               
                                                                                                                    
    # Load the dataset
    data = utils.load_data(conf_dataset)
        
    if conf_dataset['transfer']:
    # Data for the ALC proxy
        label = data[3]
        data = data[:3]
        
  
                                    
    # First layer : train or load a PCA
    pca = create_pca(conf_dataset, pca_layer, data, model=pca_layer['name'])
    data = [utils.sharedX(pca.function()(set.get_value(borrow=True)),borrow=True) for set in data]  
    '''
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)
      
        alc = embed.score(data_train, label_train)
        print '... resulting ALC on train (for PCA) is', alc
    '''                     
                         
                                                                                   
    nvis = utils.get_constant(data[0].shape[1]).item()
  
    conf = {
        'corruption_level': 0.1,
        'nhid': 200,
        'nvis': nvis,
        'anneal_start': 100,
        'base_lr': 0.001, 
        'tied_weights': True,
        'act_enc': 'sigmoid',
        'act_dec': None,
        #'lr_hb': 0.10,
        #'lr_vb': 0.10,
        'tied_weights': True ,
        'solution': solution,
        'sparse_penalty': sparse_penalty,
        'sparsityTarget': sparsityTarget ,
        'sparsityTargetPenalty': sparsityTargetPenalty,
        'irange': 0,
    }

    # A symbolic input representing your minibatch.
    minibatch = tensor.matrix()

    # Allocate a denoising autoencoder with binomial noise corruption.
    corruptor = GaussianCorruptor(conf['corruption_level'])
    da = DenoisingAutoencoder(corruptor, conf['nvis'], conf['nhid'],
                              conf['act_enc'], conf['act_dec'], conf['tied_weights'], conf['solution'], conf['sparse_penalty'],
                              conf['sparsityTarget'], conf['sparsityTargetPenalty'])

    # Allocate an optimizer, which tells us how to update our model.
    # TODO: build the cost another way
    cost = SquaredError(da)(minibatch, da.reconstruct(minibatch)).mean()
    trainer = SGDOptimizer(da, conf['base_lr'], conf['anneal_start'])
    updates = trainer.cost_updates(cost)

    # Finally, build a Theano function out of all this.
    train_fn = theano.function([minibatch], cost, updates=updates)

    # Suppose we want minibatches of size 10
    proba = utils.getboth(conf, pca_layer, 'proba')    
    iterator = BatchIterator(data, proba, batchsize)
    
    # Here's a manual training loop. I hope to have some classes that
    # automate this a litle bit.
    final_cost = 0
    for epoch in xrange(epochs):
        c = []
        for minibatch_data in iterator:
            minibatch_err = train_fn(minibatch_data)
            c.append(minibatch_err)
        final_cost = numpy.mean(c)
        print "epoch %d, cost : %f" % (epoch , final_cost)
        

    print '############################## Fin de l\'experience ############################'
    print 'Calcul de l\'ALC : '
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)
        alc = embed.score(data_train, label_train)
        
        print 'Solution : ',solution
        print 'sparse_penalty = ',sparse_penalty
        print 'sparsityTarget = ',sparsityTarget
        print 'sparsityTargetPenalty = ',sparsityTargetPenalty
        print 'Final denoising error is : ',final_cost 
        print '... resulting ALC on train is', alc    
        return (alc,final_cost)
コード例 #7
0
    print 'File name : ',filename                                                                 
    # Try to load the model
    if model is not None:
        print '... loading layer:', clsname
        try:
            return PCA.load(filename)
        except Exception, e:
            print 'Warning: error while loading %s:' % clsname, e.args[0]
            print 'Switching back to training mode.'
                                                                                                                               
    # Train the model
    print '... training layer:', clsname
    MyPCA = pylearn2.pca.get(clsname)
    pca = MyPCA.fromdict(layer)
                                   
    proba = utils.getboth(layer, conf, 'proba')
    blended = utils.blend(data, proba)
    pca.train(blended.get_value(borrow=True))
    
    pca.save(filename)
    return pca

def main_train(epochs, batchsize, solution='',sparse_penalty=0,sparsityTarget=0,sparsityTargetPenalty=0):
    
    # Experiment specific arguments
    conf_dataset = {'dataset' : 'avicenna',
                    'expname' : 'dummy', # Used to create the submission file
                    'transfer' : True,
                    'normalize' : True, # (Default = True)
                    'normalize_on_the_fly' : False, # (Default = False)
                    'randomize_valid' : True, # (Default = True)
コード例 #8
0
def main_train(epochs,
               batchsize,
               solution='',
               sparse_penalty=0,
               sparsityTarget=0,
               sparsityTargetPenalty=0):

    # Experiment specific arguments
    conf_dataset = {
        'dataset': 'avicenna',
        'expname': 'dummy',  # Used to create the submission file
        'transfer': True,
        'normalize': True,  # (Default = True)
        'normalize_on_the_fly': False,  # (Default = False)
        'randomize_valid': True,  # (Default = True)
        'randomize_test': True,  # (Default = True)
        'saving_rate': 0,  # (Default = 0)
        'savedir': './outputs',
    }

    # First layer = PCA-75 whiten
    pca_layer = {
        'name': '1st-PCA',
        'num_components': 75,
        'min_variance': -50,
        'whiten': True,
        'pca_class': 'CovEigPCA',
        # Training properties
        'proba': [1, 0, 0],
        'savedir': './outputs',
    }

    # Load the dataset
    data = utils.load_data(conf_dataset)

    if conf_dataset['transfer']:
        # Data for the ALC proxy
        label = data[3]
        data = data[:3]

    # First layer : train or load a PCA
    pca = create_pca(conf_dataset, pca_layer, data, model=pca_layer['name'])
    data = [
        utils.sharedX(pca.function()(set.get_value(borrow=True)), borrow=True)
        for set in data
    ]
    '''
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)
      
        alc = embed.score(data_train, label_train)
        print '... resulting ALC on train (for PCA) is', alc
    '''

    nvis = utils.get_constant(data[0].shape[1]).item()

    conf = {
        'corruption_level': 0.1,
        'nhid': 200,
        'nvis': nvis,
        'anneal_start': 100,
        'base_lr': 0.001,
        'tied_weights': True,
        'act_enc': 'sigmoid',
        'act_dec': None,
        #'lr_hb': 0.10,
        #'lr_vb': 0.10,
        'tied_weights': True,
        'solution': solution,
        'sparse_penalty': sparse_penalty,
        'sparsityTarget': sparsityTarget,
        'sparsityTargetPenalty': sparsityTargetPenalty,
        'irange': 0,
    }

    # A symbolic input representing your minibatch.
    minibatch = tensor.matrix()

    # Allocate a denoising autoencoder with binomial noise corruption.
    corruptor = GaussianCorruptor(conf['corruption_level'])
    da = DenoisingAutoencoder(corruptor, conf['nvis'], conf['nhid'],
                              conf['act_enc'], conf['act_dec'],
                              conf['tied_weights'], conf['solution'],
                              conf['sparse_penalty'], conf['sparsityTarget'],
                              conf['sparsityTargetPenalty'])

    # Allocate an optimizer, which tells us how to update our model.
    # TODO: build the cost another way
    cost = SquaredError(da)(minibatch, da.reconstruct(minibatch)).mean()
    trainer = SGDOptimizer(da, conf['base_lr'], conf['anneal_start'])
    updates = trainer.cost_updates(cost)

    # Finally, build a Theano function out of all this.
    train_fn = theano.function([minibatch], cost, updates=updates)

    # Suppose we want minibatches of size 10
    proba = utils.getboth(conf, pca_layer, 'proba')
    iterator = BatchIterator(data, proba, batchsize)

    # Here's a manual training loop. I hope to have some classes that
    # automate this a litle bit.
    final_cost = 0
    for epoch in xrange(epochs):
        c = []
        for minibatch_data in iterator:
            minibatch_err = train_fn(minibatch_data)
            c.append(minibatch_err)
        final_cost = numpy.mean(c)
        print "epoch %d, cost : %f" % (epoch, final_cost)

    print '############################## Fin de l\'experience ############################'
    print 'Calcul de l\'ALC : '
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)
        alc = embed.score(data_train, label_train)

        print 'Solution : ', solution
        print 'sparse_penalty = ', sparse_penalty
        print 'sparsityTarget = ', sparsityTarget
        print 'sparsityTargetPenalty = ', sparsityTargetPenalty
        print 'Final denoising error is : ', final_cost
        print '... resulting ALC on train is', alc
        return (alc, final_cost)
コード例 #9
0
    print 'File name : ', filename
    # Try to load the model
    if model is not None:
        print '... loading layer:', clsname
        try:
            return PCA.load(filename)
        except Exception, e:
            print 'Warning: error while loading %s:' % clsname, e.args[0]
            print 'Switching back to training mode.'

    # Train the model
    print '... training layer:', clsname
    MyPCA = pylearn2.pca.get(clsname)
    pca = MyPCA.fromdict(layer)

    proba = utils.getboth(layer, conf, 'proba')
    blended = utils.blend(data, proba)
    pca.train(blended.get_value(borrow=True))

    pca.save(filename)
    return pca


def main_train(epochs,
               batchsize,
               solution='',
               sparse_penalty=0,
               sparsityTarget=0,
               sparsityTargetPenalty=0):

    # Experiment specific arguments
コード例 #10
0
    # Try to load the model
    if model is not None:
        print '... loading layer:', clsname
        try:
            return PCA.load(filename)
        except Exception, e:
            print 'Warning: error while loading %s:' % clsname, e.args[0]
            print 'Switching back to training mode.'

    # Train the model
    print '... training layer:', clsname
    MyPCA = pylearn2.pca.get(clsname)
    pca = MyPCA.fromdict(layer)

    proba = utils.getboth(layer, conf, 'proba')
    blended = utils.blend(data, proba)
    pca.train(blended.get_value(borrow=True))

    # Save model parameters
    pca.save(filename)
    return pca


def create_ae(conf, layer, data, model=None):
    """
    This function basically train an autoencoder according
    to the parameters in conf, and save the learned model
    """
    savedir = utils.getboth(layer, conf, 'savedir')
    clsname = layer['autoenc_class']
コード例 #11
0
ファイル: example_pca_da.py プロジェクト: sonu5623/pylearn2
def main_train(epochs, batchsize, solution="", sparse_penalty=0, sparsityTarget=0, sparsityTargetPenalty=0):

    # Experiment specific arguments
    conf_dataset = {
        "dataset": "avicenna",
        "expname": "dummy",  # Used to create the submission file
        "transfer": True,
        "normalize": True,  # (Default = True)
        "normalize_on_the_fly": False,  # (Default = False)
        "randomize_valid": True,  # (Default = True)
        "randomize_test": True,  # (Default = True)
        "saving_rate": 0,  # (Default = 0)
        "savedir": "./outputs",
    }

    # First layer = PCA-75 whiten
    pca_layer = {
        "name": "1st-PCA",
        "num_components": 75,
        "min_variance": -50,
        "whiten": True,
        "pca_class": "CovEigPCA",
        # Training properties
        "proba": [1, 0, 0],
        "savedir": "./outputs",
    }

    # Load the dataset
    data = utils.load_data(conf_dataset)

    if conf_dataset["transfer"]:
        # Data for the ALC proxy
        label = data[3]
        data = data[:3]

    # First layer : train or load a PCA
    pca = create_pca(conf_dataset, pca_layer, data, model=pca_layer["name"])
    data = [utils.sharedX(pca.function()(set.get_value(borrow=True)), borrow=True) for set in data]
    """
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)

        alc = embed.score(data_train, label_train)
        print '... resulting ALC on train (for PCA) is', alc
    """

    nvis = utils.get_constant(data[0].shape[1]).item()

    conf = {
        "corruption_level": 0.1,
        "nhid": 200,
        "nvis": nvis,
        "anneal_start": 100,
        "base_lr": 0.001,
        "tied_weights": True,
        "act_enc": "sigmoid",
        "act_dec": None,
        #'lr_hb': 0.10,
        #'lr_vb': 0.10,
        "tied_weights": True,
        "solution": solution,
        "sparse_penalty": sparse_penalty,
        "sparsityTarget": sparsityTarget,
        "sparsityTargetPenalty": sparsityTargetPenalty,
        "irange": 0,
    }

    # A symbolic input representing your minibatch.
    minibatch = tensor.matrix()

    # Allocate a denoising autoencoder with binomial noise corruption.
    corruptor = GaussianCorruptor(conf["corruption_level"])
    da = DenoisingAutoencoder(
        corruptor,
        conf["nvis"],
        conf["nhid"],
        conf["act_enc"],
        conf["act_dec"],
        conf["tied_weights"],
        conf["solution"],
        conf["sparse_penalty"],
        conf["sparsityTarget"],
        conf["sparsityTargetPenalty"],
    )

    # Allocate an optimizer, which tells us how to update our model.
    # TODO: build the cost another way
    cost = SquaredError(da)(minibatch, da.reconstruct(minibatch)).mean()
    trainer = SGDOptimizer(da, conf["base_lr"], conf["anneal_start"])
    updates = trainer.cost_updates(cost)

    # Finally, build a Theano function out of all this.
    train_fn = theano.function([minibatch], cost, updates=updates)

    # Suppose we want minibatches of size 10
    proba = utils.getboth(conf, pca_layer, "proba")
    iterator = BatchIterator(data, proba, batchsize)

    # Here's a manual training loop. I hope to have some classes that
    # automate this a litle bit.
    final_cost = 0
    for epoch in xrange(epochs):
        c = []
        for minibatch_data in iterator:
            minibatch_err = train_fn(minibatch_data)
            c.append(minibatch_err)
        final_cost = numpy.mean(c)
        print "epoch %d, cost : %f" % (epoch, final_cost)

    print "############################## Fin de l'experience ############################"
    print "Calcul de l'ALC : "
    if conf_dataset["transfer"]:
        data_train, label_train = utils.filter_labels(data[0], label)
        alc = embed.score(data_train, label_train)

        print "Solution : ", solution
        print "sparse_penalty = ", sparse_penalty
        print "sparsityTarget = ", sparsityTarget
        print "sparsityTargetPenalty = ", sparsityTargetPenalty
        print "Final denoising error is : ", final_cost
        print "... resulting ALC on train is", alc
        return (alc, final_cost)
コード例 #12
0
ファイル: example_pca_da.py プロジェクト: sonu5623/pylearn2
    print "File name : ", filename
    # Try to load the model
    if model is not None:
        print "... loading layer:", clsname
        try:
            return PCA.load(filename)
        except Exception, e:
            print "Warning: error while loading %s:" % clsname, e.args[0]
            print "Switching back to training mode."

    # Train the model
    print "... training layer:", clsname
    MyPCA = pylearn2.pca.get(clsname)
    pca = MyPCA.fromdict(layer)

    proba = utils.getboth(layer, conf, "proba")
    blended = utils.blend(data, proba)
    pca.train(blended.get_value(borrow=True))

    pca.save(filename)
    return pca


def main_train(epochs, batchsize, solution="", sparse_penalty=0, sparsityTarget=0, sparsityTargetPenalty=0):

    # Experiment specific arguments
    conf_dataset = {
        "dataset": "avicenna",
        "expname": "dummy",  # Used to create the submission file
        "transfer": True,
        "normalize": True,  # (Default = True)