コード例 #1
0
 def __init__(self, clipping_value, cost, exclude_params=[]):
     assert isinstance(clipping_value, py_number_types)
     assert isinstance(cost, Cost)
     assert is_iterable(exclude_params)
     assert all(isinstance(param_name, six.string_types)
                for param_name in exclude_params)
     self.__dict__.update(locals())
     del self.self
コード例 #2
0
 def __init__(self, clipping_value, cost, exclude_params=[]):
     assert isinstance(clipping_value, py_number_types)
     assert isinstance(cost, Cost)
     assert is_iterable(exclude_params)
     assert all(
         isinstance(param_name, six.string_types)
         for param_name in exclude_params)
     self.__dict__.update(locals())
     del self.self
コード例 #3
0
ファイル: layerlist.py プロジェクト: ballasn/facedet
 def _weight_decay_aggregate(self, method_name, coeff):
     if isinstance(coeff, py_float_types):
         return T.sum([getattr(layer, method_name)(coeff)
                       for layer in self.layers])
     elif is_iterable(coeff):
         assert all(layer_coeff >= 0 for layer_coeff in coeff)
         return T.sum([getattr(layer, method_name)(layer_coeff) for
                       layer, layer_coeff in safe_zip(self.layers, coeff)
                       if layer_coeff > 0], dtype=config.floatX)
     else:
         raise TypeError("LayerList's " + method_name + " received "
                         "coefficients of type " + str(type(coeff)) + " "
                         "but must be provided with a float or list/tuple")
コード例 #4
0
    def get_weight_decay(self, coeff):
        method_name = 'get_weight_decay'
        if isinstance(coeff, py_float_types):
           decay_list = [getattr(layer, method_name)(coeff)
                          for layer in self.layers]
        elif is_iterable(coeff):
            assert all(layer_coeff >= 0 for layer_coeff in coeff)
            decay_list = [getattr(layer, method_name)(layer_coeff) for
                          layer, layer_coeff in safe_zip(self.layers, coeff)
                          if layer_coeff > 0]
        else:
            raise TypeError("CompositeLayer's " + method_name + " received "
                            "coefficients of type " + str(type(coeff)) + " "
                            "but must be provided with a float or list/tuple")

        return decay_list
コード例 #5
0
ファイル: __init__.py プロジェクト: DevSinghSachan/pylearn2
 def _validate_impl(self, is_numeric, batch):
     assert is_iterable(batch) and len(batch) == 2
     self.data_space._validate_impl(is_numeric, batch[0])
     self.mask_space._validate_impl(is_numeric, batch[1])
コード例 #6
0
ファイル: test_mlp.py プロジェクト: KennethPierce/pylearnk
def test_composite_layer():
    """
    Test the routing functionality of the CompositeLayer
    """
    # Without routing
    composite_layer = CompositeLayer('composite_layer',
                                     [Linear(2, 'h0', irange=0),
                                      Linear(2, 'h1', irange=0),
                                      Linear(2, 'h2', irange=0)])
    mlp = MLP(nvis=2, layers=[composite_layer])
    for i in range(3):
        composite_layer.layers[i].set_weights(
            np.eye(2, dtype=theano.config.floatX)
        )
        composite_layer.layers[i].set_biases(
            np.zeros(2, dtype=theano.config.floatX)
        )
    X = tensor.matrix()
    y = mlp.fprop(X)
    funs = [theano.function([X], y_elem) for y_elem in y]
    x_numeric = np.random.rand(2, 2).astype('float32')
    y_numeric = [f(x_numeric) for f in funs]
    assert np.all(x_numeric == y_numeric)

    # With routing
    for inputs_to_layers in [{0: [1], 1: [2], 2: [0]},
                             {0: [1], 1: [0, 2], 2: []},
                             {0: [], 1: []}]:
        composite_layer = CompositeLayer('composite_layer',
                                         [Linear(2, 'h0', irange=0),
                                          Linear(2, 'h1', irange=0),
                                          Linear(2, 'h2', irange=0)],
                                         inputs_to_layers)
        input_space = CompositeSpace([VectorSpace(dim=2),
                                      VectorSpace(dim=2),
                                      VectorSpace(dim=2)])
        mlp = MLP(input_space=input_space, layers=[composite_layer])
        for i in range(3):
            composite_layer.layers[i].set_weights(
                np.eye(2, dtype=theano.config.floatX)
            )
            composite_layer.layers[i].set_biases(
                np.zeros(2, dtype=theano.config.floatX)
            )
        X = [tensor.matrix() for _ in range(3)]
        y = mlp.fprop(X)
        funs = [theano.function(X, y_elem, on_unused_input='ignore')
                for y_elem in y]
        x_numeric = [np.random.rand(2, 2).astype(theano.config.floatX)
                     for _ in range(3)]
        y_numeric = [f(*x_numeric) for f in funs]
        assert all([all([np.all(x_numeric[i] == y_numeric[j])
                         for j in inputs_to_layers[i]])
                    for i in inputs_to_layers])

    # Get the weight decay expressions from a composite layer
    composite_layer = CompositeLayer('composite_layer',
                                     [Linear(2, 'h0', irange=0.1),
                                      Linear(2, 'h1', irange=0.1)])
    input_space = VectorSpace(dim=10)
    mlp = MLP(input_space=input_space, layers=[composite_layer])
    for attr, coeff in product(['get_weight_decay', 'get_l1_weight_decay'],
                               [[0.7, 0.3], 0.5]):
        f = theano.function([], getattr(composite_layer, attr)(coeff))
        if is_iterable(coeff):
            g = theano.function(
                [], tensor.sum([getattr(layer, attr)(c) for c, layer
                                in zip(coeff, composite_layer.layers)])
            )
            assert np.allclose(f(), g())
        else:
            g = theano.function(
                [], tensor.sum([getattr(layer, attr)(coeff) for layer
                                in composite_layer.layers])
            )
            assert np.allclose(f(), g())
コード例 #7
0
ファイル: __init__.py プロジェクト: yusuke0519/pylearn2
 def _validate_impl(self, is_numeric, batch):
     assert is_iterable(batch) and len(batch) == 2
     self.data_space._validate_impl(is_numeric, batch[0])
     self.mask_space._validate_impl(is_numeric, batch[1])