コード例 #1
0
def sell_stocks_not_in_portfolio(context, data):
    for stock in context.portfolio.positions:
        if stock not in context.stocks:
            LOG.info(
                "selling stock %s that should no longer be in the portfolio" %
                stock.symbol)
            order_target_percent(stock, 0)
コード例 #2
0
def late_day_trade(context, data):
    #Get the pipeline output
    pipe_output = pipeline_output('Stocks')
    context.days_stocks = pipe_output.sort_values(by =['ann_var'], ascending = False)
    #log.info(context.days_stocks)
    log.info(context.daily_message, context.day_count)
    log.info(context.days_stocks)
    log.info(type(context.days_stocks))
    
    #Calculate Daily Return Top Losers
    if (context.days_stocks.size > 0):
        price_history = data.history(context.days_stocks.index, "price", 745, "1m") #356 +390
        open_prices = price_history.iloc[0]
        current_prices = price_history.iloc[-1]
        context.idr_losers = ((current_prices - open_prices) / open_prices).sort_values()
        context.idr_losers = context.idr_losers[0:5]#5    
        log.info(context.idr_losers)
    else:
        price_history = data.history(context.backup_stocks, "price", 1 , "1m") #356
        current_prices = price_history.iloc[-1]
        context.idr_losers = current_prices #Stock info is irrelevant here  
          
    pct_cash = context.portfolio.cash/context.portfolio.portfolio_value
    
    #Get Open Orders and Buy
    for stock in context.idr_losers.index:
        if(data.can_trade(stock)):
            if(stock not in context.open_orders):
               order_target_percent(stock, pct_cash/(context.idr_losers.size + 1))
                                   
    #Check Portfolio
    #log.info(type(context.portfolio.positions))
    record(leverage = context.account.leverage) #be sure to always track leverage
    record(cash = context.portfolio.cash)
    record(port_value = context.portfolio.portfolio_value)
コード例 #3
0
ファイル: 3x_etfs.py プロジェクト: Nick8197/trading-algo
def my_rebalance(context, data):
    target_weights = compute_target_weights(context, data, 1)
    log.info(target_weights)

    if target_weights:
        for stock, weight in target_weights.items():
            order_target_percent(stock, weight)
コード例 #4
0
def manageStops(context, data):
    for asset, value in context.portfolio.positions.items():
        stopPrice = context.stopPriceMap[asset]
        currentPrice = data.current(asset, 'close')
        newStop = currentPrice * context.stopLevel
        if currentPrice < stopPrice:
            logging.info(f'Stopped out of {asset}')
            order_target_percent(asset, 0.0)
        elif newStop > stopPrice:
            context.stopPriceMap[asset] = newStop
コード例 #5
0
ファイル: 3x_etfs.py プロジェクト: Nick8197/trading-algo
def handle_data(context, data):
    today = get_datetime().floor('1D')
    last_date = getattr(context, 'last_ran_buy', None)
    if today != last_date:
        my_rebalance(context, data)
        context.last_ran_buy = today
    else:
        for stock, position in context.portfolio.positions.items():
            if get_open_orders(stock):
                continue

            current_price = data.current(stock, 'price')
            cost_basis = position.cost_basis
            stop_loss = -0.05
            current_loss = (current_price - cost_basis) / cost_basis

            if current_loss < stop_loss:
                log.info('selling early %s (%.2f)' % (stock.symbol, current_loss))
                order_target_percent(stock, 0)
コード例 #6
0
def entryAndExitLogic(context, data, filtered):
    numOfPositions = len(context.portfolio.positions)
    if not filtered.empty:
        for asset, value in filtered.iterrows():
            asset = symbol(asset)
            currentPrice = data.current(asset, 'close')
            # stopPrice = currentPrice * context.stopLevel
            if longConditionsMet(value, currentPrice):
                # enter position with position size as long as leverage is below certain level
                if withinLeverageLimit(context, numOfPositions):
                    logging.info(
                        f'Ordering shares of {asset} at {currentPrice}')
                    # context.stopPriceMap[asset] = stopPrice
                    order_target_percent(asset, context.position_size)
                    numOfPositions += 1
            elif asset in context.portfolio.positions.keys():
                logging.info(f'Exiting position in {asset}')
                if not asset in [symbol('NCNO'), symbol('GME')]:
                    order_target_percent(asset, 0.0)
コード例 #7
0
def handle_data(context, data):
    # The handle_data method is called by pylivetrader every minute when
    # new data is received. This is where we'll execute our trading logic. For
    # an explanation of pylivetrader function scheduling, please see here:
    # https://github.com/alpacahq/pylivetrader#run.

    # Compute averages
    # data.history() will return a pandas dataframe with price information.
    # pandas' EWM method will give us our exponential moving averages.

    # Calculate short-term EMA (using data from the past 12 minutes.)
    short_periods = 12
    short_data = data.history(context.asset,
                              'price',
                              bar_count=short_periods,
                              frequency="1m")
    short_ema = pd.Series.ewm(short_data, span=short_periods).mean().iloc[-1]
    # Calculate long-term EMA (using data from the past 26 minutes.)
    long_periods = 26
    long_data = data.history(context.asset,
                             'price',
                             bar_count=long_periods,
                             frequency="1m")
    long_ema = pd.Series.ewm(long_data, span=long_periods).mean().iloc[-1]

    macd = short_ema - long_ema

    # Trading logic
    if macd > 0:
        # order_target_percent allocates a specified percentage of your
        # portfolio to a long position in a given asset. (A value of 1
        # means that 100% of your portfolio will be allocated.)
        order_target_percent(context.asset, 1)
    elif macd < 0:
        # You can supply a negative value to short an asset instead.
        order_target_percent(context.asset, -1)

    # Save values for later inspection
    record(AAPL=data.current(context.asset, 'price'),
           short_mavg=short_ema,
           long_mavg=long_ema)
コード例 #8
0
ファイル: istr_algo.py プロジェクト: Walshco1/alpacatrading
def clear_queue(context, data):
    if context.rebalance_complete:
        if bool(context.trade_queue):
            log.info('Attempting to clear trading queue')
            remove_queue_list = []
            for security, amount in context.trade_queue.items():
                if data.can_trade(security):
                    order_target_percent(security, amount)
                    remove_queue_list.append(security)
                else:
                    if context.clear_queue_run == 0:
                        log.warning('{} is not able to trade'.format(security))
                        asset_info = api.get_asset(security.symbol)
                        log.info('Asset info: {}'.format(asset_info))
            for security in remove_queue_list:
                del context.trade_queue[security]
            context.clear_queue_run += 1
            if bool(context.trade_queue):
                if context.clear_queue_run % 5 == 0:
                    log.info('Items remaining in trade queue: {}'.format(
                        context.trade_queue))
            else:
                log.info('Trade queue is now empty')
コード例 #9
0
def sell(context, data):
    context.tracker = clean_tracker(context.tracker, context.portfolio.positions)
    add_to_tracker(context.tracker, context.portfolio.positions, context.tmp_tracker)
    increment_day(context.tracker)
    for security in context.portfolio.positions:
        if data.can_trade(security):
            age = int(context.tracker[security.symbol]['days'])
            if is_expired(age):
                order_target_percent(security, 0)
            else:
                price_share = context.portfolio.positions[security].cost_basis
                atr = float(context.tracker[security.symbol]['atr'])
                stop_loss_price = get_stop_price(price_share, atr)
                if stop_loss_price > 0:
                    order_target_percent(security, 0, style=StopOrder(stop_loss_price))

                profit_price = price_share * 1.03
                last_price = context.portfolio.positions[security].last_sale_price
                if last_price >= profit_price:
                    order_target_percent(security, 0)
    context.tmp_tracker = dict()
コード例 #10
0
def handle_data(context, data):
    # Morning Margin Check (UTC timezone) - LONG ONLY
    if get_datetime().hour == 14 and get_datetime().minute == 35:
        context.requiredMargin = marginRequirements(context.portfolio) * 3.0
        if context.portfolio.cash < 0.:
            context.usedMargin = abs(context.portfolio.cash)
        else:
            context.usedMargin = 0.
        if context.requiredMargin < context.usedMargin:
            log.warn('MARGIN REQUIREMENTS EXCEEDED. ' +\
                     'Used Margin = ' + str(context.usedMargin) +\
                     ' Allowable Margin = ' + str(context.requiredMargin))
        # Liquidate if total value falls 10% or more (disable margin use after 5% loss)
        if 0.9 * (context.portfolio.positions_value +
                  context.portfolio.cash) > context.trailingStopPortfolioValue:
            context.trailingStopPortfolioValue = 0.90 * (
                context.portfolio.positions_value + context.portfolio.cash)
            context.disableMarginPortfolioValue = 0.95 * (
                context.portfolio.positions_value + context.portfolio.cash)
        if (context.portfolio.positions_value +
                context.portfolio.cash) < context.trailingStopPortfolioValue:
            log.warn('*** L I Q U I D A T E ***')
            liquidate(context.portfolio)
            context.trailingStopPortfolioValue = 0.90 * (
                context.portfolio.positions_value + context.portfolio.cash)
        if (context.portfolio.positions_value +
                context.portfolio.cash) < context.disableMarginPortfolioValue:
            log.info('*** MARGIN USE DISABLED ***')
            context.allowableMargin = 1.
            context.enableMarginPortfolioValue = 1.10 * (
                context.portfolio.positions_value + context.portfolio.cash)
        elif (context.portfolio.positions_value +
              context.portfolio.cash) > context.enableMarginPortfolioValue:
            log.info('*** MARGIN USE ENABLED ***')
            context.allowableMargin = 2.

    # End of Day
    if get_datetime().hour == 20 and get_datetime().minute == 55:
        for stock in list(data.keys()):
            closeAnyOpenOrders(stock)

    #if loc_dt.month != context.previous_month:
###    if (get_datetime() - context.lastPortfolioUpdate) >= timedelta(weeks=context.rebalanceFrequency):
###        context.lastPortfolioUpdate = get_datetime()
###        log.debug('Number of secruities to be considered: ' + str(len(data.keys())))
    if get_datetime().hour == 14 and get_datetime().minute == 35:
        all_prices = history(250, '1d', 'price')
        daily_returns = all_prices.pct_change().dropna()

        dr = np.array(daily_returns)
        (rr, cc) = dr.shape

        expreturns, covars = assets_meanvar(dr, list(data.keys()))
        R = expreturns
        C = covars
        rf = 0.015
        expreturns = np.array(expreturns)

        frontier_mean, frontier_var, frontier_weights = solve_frontier(
            R, C, rf, context)

        f_w = array(frontier_weights)
        (row_1, col_1) = f_w.shape

        # Choose an allocation along the efficient frontier
        wts = frontier_weights[context.risk_tolerance]
        new_weights = wts

        # Set leverage to 1
        leverage = sum(abs(new_weights))
        portfolio_value = (context.portfolio.positions_value +
                           context.portfolio.cash) / leverage
        record(PV=portfolio_value)
        record(Cash=context.portfolio.cash)

        # Reweight portfolio
        i = 0
        for sec in list(data.keys()):
            if wts[i] < 0.01:
                wts[i] = 0.0
            if wts[i] < 0.01 and context.portfolio.positions[sec].amount == 0:
                i = i + 1
                continue
            order_target_percent(sec, wts[i], None, None)
            log.info('Adjusting ' + str(sec) + ' to ' + str(wts[i] * 100.0) +
                     '%')
            i = i + 1
コード例 #11
0
ファイル: -.py プロジェクト: CruddyShad0w/captain-blood-algo
def handle_trade(context, data):

    context.dgaz = [symbol('DGAZ')]
    context.ugaz = [symbol('UGAZ')]

    current_dgaz_price = data.current(context.dgaz, 'price')

    current_ugaz_price = data.current(context.ugaz, 'price')

    average_dgaz_two_week_price = dgaz_two_week_price.mean()

    average_ugaz_two_week_price = ugaz_two_week_price.mean()

    average_dgaz_week_price = dgaz_week_price.mean()

    if current_dgaz_price > average_dgaz_two_week_price:
        order_target_percent(symbol('DGAZ'), 0)

    if current_ugaz_price > average_ugaz_two_week_price:
        order_target_percent(symbol('UGAZ'), 0)

    if current_dgaz_price <= (0.8 * average_dgaz_two_week_price):
        order_target_percent(symbol('DGAZ'), 0)

    if current_ugaz_price <= (0.8 * average_ugaz_two_week_price):
        order_target_percent(symbol('UGAZ'), 0)

    if current_dgaz_price <= (0.8 * average_dgaz_two_week_price):
        order_target_percent(symbol('UGAZ'), 1)

    if current_ugaz_price <= (0.8 * average_ugaz_two_week_price):
        order_target_percent(symbol('DGAZ'), 1)

    if current_dgaz_price < (0.95 * average_dgaz_week_price):
        order_target_percent(symbol('DGAZ'), 1)

    if current_dgaz_price >= (1.1 * average_dgaz_two_week_price):
        order_target_percent(symbol('DGAZ'), 1)
コード例 #12
0
ファイル: istr_algo.py プロジェクト: Walshco1/alpacatrading
def rebalance(context, data):

    if context.ndays % context.idays == 0:

        if context.str_weight == 1:

            rdf = context.pipe_out

            # Remove stocks with trade restrictions and non-shortable stocks for short selection
            assets = api.list_assets()
            asset_dict = {}
            for i in range(len(assets)):
                asset_dict.update({assets[i].symbol: assets[i].easy_to_borrow})
            rdf['etb'] = rdf['symbol'].map(asset_dict)
            rdf = rdf[~rdf['symbol'].isin(context.combined_restrictions)]
            rdf_short = rdf[rdf.etb == True]

            # Select securities for long and short
            if context.flip_signal == False:
                longs = rdf['ind_adj_str'].nsmallest(context.num_longs * 2)
                longs = longs.nlargest(context.num_longs)
                shorts = rdf_short['ind_adj_str'].nlargest(context.num_shorts)
            else:
                longs = rdf['ind_adj_str'].nlargest(context.num_longs)
                shorts = rdf_short['ind_adj_str'].nsmallest(context.num_shorts)

            # Select and log stocks to trade
            context.longs = longs.index.tolist()
            context.shorts = shorts.index.tolist()

            log.info('longs: {}'.format(context.longs))
            log.info('Shorts: {}'.format(context.shorts))
            log.info('Portfolio positions: {}'.format(
                context.portfolio.positions))

            # Place trades
            log.info('Rebalancing existing positions')
            not_tradeable_count = 0

            for security in context.portfolio.positions:
                if security not in context.longs and security not in context.shorts:
                    if data.can_trade(security):
                        order_id = order_target_percent(security, 0.0)
                    else:
                        not_tradeable_count += 1
                        log.warning('{} is not able to trade'.format(security))
                        context.trade_queue[security] = 0.0
            log.info('Rebalancing existing positions complete!')

            # Check circuit breaker
            if not_tradeable_count / 30 > 0.75:
                log.info('Circuit breaker may have been hit')

            log.info('Buying new long positions')
            for security in context.longs:
                if data.can_trade(security):
                    order_id = order_target_percent(security,
                                                    context.long_weight)
                else:
                    log.warning('{} is not able to trade'.format(security))
                    context.trade_queue[security] = context.long_weight
            log.info('Buying new long positions complete!')

            log.info('Selling new short positions')
            for security in context.shorts:
                if data.can_trade(security):
                    order_id = order_target_percent(security,
                                                    context.short_weight)
                else:
                    log.warning('{} is not able to trade'.format(security))
                    context.trade_queue[security] = context.short_weight
            log.info('Selling new short positions complete!')
            log.info('Trading complete!')

            context.rebalance_complete = True

        else:

            for security in context.portfolio.positions:
                if security not in context.SPY:
                    if data.can_trade(security):
                        order_target_percent(security, 0.0)
                    else:
                        not_tradeable_count += 1
                        log.warning('{} is not able to trade'.format(security))
                        context.trade_queue[security] = 0.0

            order_target_percent(context.SPY, context.spyleverage)
コード例 #13
0
def morning_day_trade3(context, data):
    for stock in context.portfolio.positions:
        if((data.current(stock, 'price')) - context.portfolio.positions[stock].cost_basis)/context.portfolio.positions[stock].cost_basis > 0.2:
            if (context.portfolio.positions[stock].amount > 0): #or context.portfolio.positions[stock].amount < 0):
                order_target_percent(stock, 0)
                log.info("{} Current Price = {} :: Cost Basis = {}",stock.symbol, data.current(stock, 'price'), context.portfolio.positions[stock].cost_basis)
コード例 #14
0
def morning_day_trade2(context, data):
    for stock in context.portfolio.positions:
        if((data.current(stock, 'price')) - context.portfolio.positions[stock].cost_basis)/context.portfolio.positions[stock].cost_basis > 0.001:
            if ((context.portfolio.positions[stock].amount > 0) or (data.current(stock, 'price') < 0.30)):
                order_target_percent(stock, 0)