コード例 #1
0
    def test_ridge_warning_in_fit_mle(self):
        """
        Ensure that a UserWarning is raised when one passes the ridge keyword
        argument to the `fit_mle` method of a Nested Logit model object.
        """
        # Bundle the arguments used to construct the nested logit model
        constructor_args = [
            self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col,
            self.fake_specification, self.fake_names
        ]
        # Bundle the kwargs for constructing the nested_logit_model
        constructor_kwargs = {"nest_spec": self.fake_nest_spec}

        # Create the mnl model object whose coefficients will be estimated.
        base_nl = nl.NestedLogit(*constructor_args, **constructor_kwargs)

        # Create a variable for the fit_mle function's kwargs.
        # The print_res = False arguments are to make sure strings aren't
        # printed to the console unnecessarily.
        fit_kwargs = {"constrained_pos": [1], "ridge": 0.5, "print_res": False}

        # Test to make sure that the ridge warning message is printed when
        # using the ridge keyword argument
        with warnings.catch_warnings(record=True) as w:
            # Use this filter to always trigger the  UserWarnings
            warnings.simplefilter('always', UserWarning)

            base_nl.fit_mle(self.fake_all_params, **fit_kwargs)
            self.assertGreaterEqual(len(w), 1)
            self.assertIsInstance(w[0].category, type(UserWarning))
            self.assertIn(nl._ridge_warning_msg, str(w[0].message))

        return None
コード例 #2
0
    def test_just_point_kwarg(self):
        """
        Ensure that calling `fit_mle` with `just_point = True` returns a
        dictionary with a 'x' key and a corresponding value that is an ndarray.
        """
        # Bundle the arguments used to construct the nested logit model
        constructor_args = [
            self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col,
            self.fake_specification
        ]

        # Bundle the kwargs for constructing the nested_logit_model
        constructor_kwargs = {
            "names": self.fake_names,
            "nest_spec": self.fake_nest_spec
        }

        # Create the mnl model object whose coefficients will be estimated.
        base_nl = nl.NestedLogit(*constructor_args, **constructor_kwargs)
        # Create a variable for the arguments to the fit_mle function.
        fit_args = [self.fake_all_params]
        # Alias the function being tested
        func = base_nl.fit_mle
        # Get the necessary kwargs
        kwargs = {"just_point": True}
        # Get the function results
        func_result = func(*fit_args, **kwargs)
        # Perform the desired tests to make sure we get back a dictionary with
        # an "x" key in it and a value that is a ndarray.
        self.assertIsInstance(func_result, dict)
        self.assertIn("x", func_result)
        self.assertIsInstance(func_result["x"], np.ndarray)
        return None
コード例 #3
0
    def test_invalid_init_kwargs_error_in_fit_mle(self):
        """
        Ensures that a ValueError is raised when users try to use any other
        type of initial value input methods other than the `init_vals`
        argument of `fit_mle()`. This prevents people from expecting the use
        of outside intercept or shape parameters to work with the Nested Logit
        model.
        """
        # Bundle the arguments used to construct the nested logit model
        constructor_args = [
            self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col,
            self.fake_specification
        ]

        # Bundle the kwargs for constructing the nested_logit_model
        constructor_kwargs = {
            "names": self.fake_names,
            "nest_spec": self.fake_nest_spec
        }

        # Create the mnl model object whose coefficients will be estimated.
        base_nl = nl.NestedLogit(*constructor_args, **constructor_kwargs)

        # Create a variable for the arguments to the fit_mle function.
        # this mimics the arguments passed when trying to use the shape_param
        # or outside intercepts kwargs with fit_mle.
        fit_args = [None]

        # Create variables for the incorrect kwargs.
        # The print_res = False arguments are to make sure strings aren't
        # printed to the console unnecessarily.
        kwarg_map_1 = {"init_shapes": np.array([1, 2]), "print_res": False}
        kwarg_map_2 = {"init_intercepts": np.array([1]), "print_res": False}
        kwarg_map_3 = {"init_coefs": np.array([1]), "print_res": False}

        # Test to ensure that the kwarg ignore message is printed when using
        # any of these three incorrect kwargs
        for kwargs in [kwarg_map_1, kwarg_map_2, kwarg_map_3]:
            self.assertRaises(ValueError, base_nl.fit_mle, *fit_args, **kwargs)

        return None
コード例 #4
0
    def test_invalid_init_vals_length_in_estimate(self):
        """
        Ensure that when _estimate() is called, with an init_values argument
        that is of an incorrect length, a ValueError is raised.
        """
        # Bundle the arguments used to construct the nested logit model
        constructor_args = [
            self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col,
            self.fake_specification, self.fake_names
        ]
        # Bundle the kwargs for constructing the nested_logit_model
        constructor_kwargs = {"nest_spec": self.fake_nest_spec}

        # Create the mnl model object whose coefficients will be estimated.
        base_nl = nl.NestedLogit(*constructor_args, **constructor_kwargs)

        # Create an estimator object.
        zero_vector = np.zeros(self.fake_all_params.shape[0])
        estimator_args = [
            base_nl,
            base_nl.get_mappings_for_fit(), None, zero_vector,
            nl.split_param_vec
        ]
        estimator_kwargs = {"constrained_pos": [1]}
        nested_estimator = nl.NestedEstimator(*estimator_args,
                                              **estimator_kwargs)

        # Alias the function being tested
        func = nested_estimator.check_length_of_initial_values

        # Test that the desired error is raised
        for i in [-1, 1]:
            init_values = np.arange(self.fake_all_params.shape[0] + i)

            self.assertRaisesRegexp(ValueError,
                                    "values are of the wrong dimension", func,
                                    init_values)

        return None
コード例 #5
0
    def setUp(self):
        # Create the betas to be used during the tests
        self.fake_betas = np.array([0.3, -0.6, 0.2])
        # Create the fake nest coefficients to be used during the tests
        # Note that these are the 'natural' nest coefficients, i.e. the
        # inverse of the scale parameters for each nest. They should be less
        # than or equal to 1.
        self.natural_nest_coefs = np.array([0.995, 0.5])
        # Create an array of all model parameters
        self.fake_all_params = np.concatenate((self.natural_nest_coefs,
                                               self.fake_betas))
        # The set up being used is one where there are two choice situations,
        # The first having three alternatives, and the second having only two.
        # The nest memberships of these alternatives are given below.
        self.fake_rows_to_nests = csr_matrix(np.array([[1, 0],
                                                       [1, 0],
                                                       [0, 1],
                                                       [1, 0],
                                                       [0, 1]]))

        # Create a sparse matrix that maps the rows of the design matrix to the
        # observatins
        self.fake_rows_to_obs = csr_matrix(np.array([[1, 0],
                                                     [1, 0],
                                                     [1, 0],
                                                     [0, 1],
                                                     [0, 1]]))

        # Create the fake design matrix with columns denoting ASC_1, ASC_2, X
        self.fake_design = np.array([[1, 0, 1],
                                     [0, 1, 2],
                                     [0, 0, 3],
                                     [1, 0, 1.5],
                                     [0, 0, 3.5]])

        # Create fake versions of the needed arguments for the MNL constructor
        self.fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2],
                                     "alt_id": [1, 2, 3, 1, 3],
                                     "choice": [0, 1, 0, 0, 1],
                                     "x": range(5),
                                     "intercept": [1 for i in range(5)]})

        # Record the various column names
        self.alt_id_col = "alt_id"
        self.obs_id_col = "obs_id"
        self.choice_col = "choice"

        # Store the choice array
        self.choice_array = self.fake_df[self.choice_col].values

        # Create a sparse matrix that maps the chosen rows of the design
        # matrix to the observatins
        self.fake_chosen_rows_to_obs = csr_matrix(np.array([[0, 0],
                                                            [1, 0],
                                                            [0, 0],
                                                            [0, 0],
                                                            [0, 1]]))

        # Create the index specification  and name dictionaryfor the model
        self.fake_specification = OrderedDict()
        self.fake_specification["intercept"] = [1, 2]
        self.fake_specification["x"] = [[1, 2, 3]]
        self.fake_names = OrderedDict()
        self.fake_names["intercept"] = ["ASC 1", "ASC 2"]
        self.fake_names["x"] = ["x (generic coefficient)"]

        # Create the nesting specification
        self.fake_nest_spec = OrderedDict()
        self.fake_nest_spec["Nest 1"] = [1, 2]
        self.fake_nest_spec["Nest 2"] = [3]

        # Create a nested logit object
        args = [self.fake_df,
                self.alt_id_col,
                self.obs_id_col,
                self.choice_col,
                self.fake_specification]
        kwargs = {"names": self.fake_names,
                  "nest_spec": self.fake_nest_spec}
        self.model_obj = nested_logit.NestedLogit(*args, **kwargs)

        # Store a ridge parameter
        self.ridge = 0.5

        return None
コード例 #6
0
    def make_nested_model(self):
        # Create the betas to be used during the tests
        fake_betas = np.array([0.3, -0.6, 0.2])
        # Create the fake nest coefficients to be used during the tests
        # Note that these are the 'natural' nest coefficients, i.e. the
        # inverse of the scale parameters for each nest. They should be bigger
        # than or equal to 1.
        natural_nest_coefs = np.array([1 - 1e-16, 0.5])
        # Create an array of all model parameters
        fake_all_params = np.concatenate((natural_nest_coefs, fake_betas))
        # The set up being used is one where there are two choice situations,
        # The first having three alternatives, and the second having only two.
        # The nest memberships of these alternatives are given below.
        fake_rows_to_nests = csr_matrix(
            np.array([[1, 0], [1, 0], [0, 1], [1, 0], [0, 1]]))

        # Create a sparse matrix that maps the rows of the design matrix to the
        # observatins
        fake_rows_to_obs = csr_matrix(
            np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1]]))

        # Create the fake design matrix with columns denoting ASC_1, ASC_2, X
        fake_design = np.array([[1, 0, 1], [0, 1, 2], [0, 0, 3], [1, 0, 1.5],
                                [0, 0, 3.5]])

        # Create fake versions of the needed arguments for the MNL constructor
        fake_df = pd.DataFrame({
            "obs_id": [1, 1, 1, 2, 2],
            "alt_id": [1, 2, 3, 1, 3],
            "choice": [0, 1, 0, 0, 1],
            "x": range(5),
            "intercept": [1 for i in range(5)]
        })

        # Record the various column names
        alt_id_col = "alt_id"
        obs_id_col = "obs_id"
        choice_col = "choice"

        # Store the choice array
        choice_array = fake_df[choice_col].values

        # Create a sparse matrix that maps the chosen rows of the design
        # matrix to the observatins
        fake_chosen_rows_to_obs = csr_matrix(
            np.array([[0, 0], [1, 0], [0, 0], [0, 0], [0, 1]]))

        # Create the index specification  and name dictionaryfor the model
        fake_specification = OrderedDict()
        fake_specification["intercept"] = [1, 2]
        fake_specification["x"] = [[1, 2, 3]]
        fake_names = OrderedDict()
        fake_names["intercept"] = ["ASC 1", "ASC 2"]
        fake_names["x"] = ["x (generic coefficient)"]

        # Create the nesting specification
        fake_nest_spec = OrderedDict()
        fake_nest_spec["Nest 1"] = [1, 2]
        fake_nest_spec["Nest 2"] = [3]

        # Create a nested logit object
        args = [
            fake_df, alt_id_col, obs_id_col, choice_col, fake_specification
        ]
        kwargs = {"names": fake_names, "nest_spec": fake_nest_spec}
        model_obj = nested_logit.NestedLogit(*args, **kwargs)

        model_obj.coefs = pd.Series(fake_betas, index=model_obj.ind_var_names)
        model_obj.intercepts = None
        model_obj.shapes = None

        def logit(x):
            return np.log(x / (1 - x))
        model_obj.nests =\
            pd.Series(logit(natural_nest_coefs), index=fake_nest_spec.keys())
        model_obj.params =\
            pd.concat([model_obj.nests, model_obj.coefs],
                      axis=0, ignore_index=False)
        return model_obj