コード例 #1
0
    def prox(self, x, tau):
        # define current number of iterations
        if isinstance(self.niter, int):
            niter = self.niter
        else:
            niter = self.niter(self.count)

        # solve proximal optimization
        if self.Op is not None and self.b is not None:
            y = x + tau * self.OpTb
            if self.q is not None:
                y -= tau * self.alpha * self.q
            if self.Op.explicit:
                Op1 = MatrixMult(
                    np.eye(self.Op.shape[1]) +
                    tau * self.sigma * np.conj(self.Op.A.T) @ self.Op.A)
                x = Op1.div(y)
            else:
                Op1 = Identity(self.Op.shape[1], dtype=self.Op.dtype) + \
                      tau * self.sigma * self.Op.H * self.Op
                x = lsqr(Op1, y, iter_lim=niter, x0=self.x0)[0]
            if self.warm:
                self.x0 = x
        elif self.b is not None:
            num = x + tau * self.sigma * self.b
            if self.q is not None:
                num -= tau * self.alpha * self.q
            x = num / (1. + tau * self.sigma)
        else:
            num = x
            if self.q is not None:
                num -= tau * self.alpha * self.q
            x = num / (1. + tau * self.sigma)
        return x
コード例 #2
0
def test_Orthogonal(par):
    """L1 functional with Orthogonal operator and proximal/dual proximal
    """
    l1 = L1()
    orth = Orthogonal(l1, Identity(par['nx']), b=np.arange(par['nx']))

    # prox / dualprox
    tau = 2.
    x = np.random.normal(0., 1., par['nx']).astype(par['dtype'])
    assert moreau(orth, x, tau)
コード例 #3
0
ファイル: Quadratic.py プロジェクト: mrava87/pyproximal
 def prox(self, x, tau):
     if self.Op is not None and self.b is not None:
         y = x - tau * self.b
         if self.Op.explicit:
             Op1 = MatrixMult(np.eye(self.Op.shape[0]) + tau * self.Op.A)
             x = Op1.div(y)
         else:
             Op1 = Identity(self.Op.shape[0], dtype=self.Op.dtype) + \
                   tau * self.Op.A
             x = lsqr(Op1, y, iter_lim=self.niter, x0=self.x0)[0]
         if self.warm:
             self.x0 = x
     elif self.b is not None:
         x = x - tau * self.b
     return x
コード例 #4
0
def PrestackInversion(data,
                      theta,
                      wav,
                      m0=None,
                      linearization='akirich',
                      explicit=False,
                      simultaneous=False,
                      epsI=None,
                      epsR=None,
                      dottest=False,
                      returnres=False,
                      epsRL1=None,
                      kind='centered',
                      **kwargs_solver):
    r"""Pre-stack linearized seismic inversion.

    Invert pre-stack seismic operator to retrieve a set of elastic property
    profiles from band-limited seismic pre-stack data (i.e., angle gathers).
    Depending on the choice of input parameters, inversion can be
    trace-by-trace with explicit operator or global with either
    explicit or linear operator.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Band-limited seismic post-stack data of size
        :math:`[(n_{lins} \times) n_{t0} \times n_{\theta} (\times n_x \times n_y)]`
    theta : :obj:`np.ndarray`
        Incident angles in degrees
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of elements
        and centered to zero)
    m0 : :obj:`np.ndarray`, optional
        Background model of size :math:`[n_{t0} \times n_{m}
        (\times n_x \times n_y)]`
    linearization : :obj:`str` or :obj:`list`, optional
        choice of linearization, ``akirich``: Aki-Richards, ``fatti``: Fatti
        ``PS``: PS or a combination of them (required only when ``m0``
        is ``None``).
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preferred for small data)
    simultaneous : :obj:`bool`, optional
        Simultaneously invert entire data (``True``) or invert
        trace-by-trace (``False``) when using ``explicit`` operator
        (note that the entire data is always inverted when working
        with linear operator)
    epsI : :obj:`float` or :obj:`list`, optional
        Damping factor(s) for Tikhonov regularization term. If a list of
        :math:`n_{m}` elements is provided, the regularization term will have
        different strenght for each elastic property
    epsR : :obj:`float`, optional
        Damping factor for additional Laplacian regularization term
    dottest : :obj:`bool`, optional
        Apply dot-test
    returnres : :obj:`bool`, optional
        Return residuals
    epsRL1 : :obj:`float`, optional
        Damping factor for additional blockiness regularization term
    kind : :obj:`str`, optional
        Derivative kind (``forward`` or ``centered``).
    **kwargs_solver
        Arbitrary keyword arguments for :py:func:`scipy.linalg.lstsq`
        solver (if ``explicit=True`` and  ``epsR=None``)
        or :py:func:`scipy.sparse.linalg.lsqr` solver (if ``explicit=False``
        and/or ``epsR`` is not ``None``))

    Returns
    -------
    minv : :obj:`np.ndarray`
        Inverted model of size :math:`[n_{t0} \times n_{m}
        (\times n_x \times n_y)]`
    datar : :obj:`np.ndarray`
        Residual data (i.e., data - background data) of
        size :math:`[n_{t0} \times n_{\theta} (\times n_x \times n_y)]`

    Notes
    -----
    The different choices of cost functions and solvers used in the
    seismic pre-stack inversion module follow the same convention of the
    seismic post-stack inversion module.

    Refer to :py:func:`pylops.avo.poststack.PoststackInversion` for
    more details.
    """
    ncp = get_array_module(data)

    # find out dimensions
    if m0 is None and linearization is None:
        raise NotImplementedError('either m0 or linearization '
                                  'must be provided')
    elif m0 is None:
        if isinstance(linearization, str):
            nm = _linearizations[linearization]
        else:
            nm = _linearizations[linearization[0]]
    else:
        nm = m0.shape[1]

    data_shape = data.shape
    data_ndim = data.ndim
    n_lins = 1
    multi = 0
    if not isinstance(linearization, str):
        n_lins = data_shape[0]
        data_shape = data_shape[1:]
        data_ndim -= 1
        multi = 1

    if data_ndim == 2:
        dims = 1
        nt0, ntheta = data_shape
        nspat = None
        nspatprod = nx = 1
    elif data_ndim == 3:
        dims = 2
        nt0, ntheta, nx = data_shape
        nspat = (nx, )
        nspatprod = nx
    else:
        dims = 3
        nt0, ntheta, nx, ny = data_shape
        nspat = (nx, ny)
        nspatprod = nx * ny
        data = data.reshape(nt0, ntheta, nspatprod)

    # check if background model and data have same shape
    if m0 is not None:
        if nt0 != m0.shape[0] or\
        (dims >= 2 and nx != m0.shape[2]) or\
        (dims == 3 and ny != m0.shape[3]):
            raise ValueError('data and m0 must have same time and space axes')

    # create operator
    if isinstance(linearization, str):
        # single operator
        PPop = PrestackLinearModelling(wav,
                                       theta,
                                       nt0=nt0,
                                       spatdims=nspat,
                                       linearization=linearization,
                                       explicit=explicit,
                                       kind=kind)
    else:
        # multiple operators
        if not isinstance(wav, (list, tuple)):
            wav = [
                wav,
            ] * n_lins
        PPop = [
            PrestackLinearModelling(w,
                                    theta,
                                    nt0=nt0,
                                    spatdims=nspat,
                                    linearization=lin,
                                    explicit=explicit)
            for w, lin in zip(wav, linearization)
        ]
        if explicit:
            PPop = MatrixMult(np.vstack([Op.A for Op in PPop]),
                              dims=nspat,
                              dtype=PPop[0].A.dtype)
        else:
            PPop = VStack(PPop)

    if dottest:
        Dottest(PPop,
                n_lins * nt0 * ntheta * nspatprod,
                nt0 * nm * nspatprod,
                raiseerror=True,
                verb=True,
                backend=get_module_name(ncp))

    # swap axes for explicit operator
    if explicit:
        data = data.swapaxes(0 + multi, 1 + multi)
        if m0 is not None:
            m0 = m0.swapaxes(0, 1)

    # invert model
    if epsR is None:
        # create and remove background data from original data
        datar = data.flatten() if m0 is None else \
            data.flatten() - PPop * m0.flatten()
        # inversion without spatial regularization
        if explicit:
            if epsI is None and not simultaneous:
                # solve unregularized equations indipendently trace-by-trace
                minv = \
                    get_lstsq(data)(PPop.A,
                                    datar.reshape(n_lins*nt0*ntheta, nspatprod).squeeze(),
                                    **kwargs_solver)[0]
            elif epsI is None and simultaneous:
                # solve unregularized equations simultaneously
                if ncp == np:
                    minv = lsqr(PPop, datar, **kwargs_solver)[0]
                else:
                    minv = cgls(PPop,
                                datar,
                                x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                                **kwargs_solver)[0]
            elif epsI is not None:
                # create regularized normal equations
                PP = ncp.dot(PPop.A.T, PPop.A) + \
                     epsI * ncp.eye(nt0*nm, dtype=PPop.A.dtype)
                datarn = np.dot(PPop.A.T,
                                datar.reshape(nt0 * ntheta, nspatprod))
                if not simultaneous:
                    # solve regularized normal eqs. trace-by-trace
                    minv = get_lstsq(data)(PP, datarn, **kwargs_solver)[0]
                else:
                    # solve regularized normal equations simultaneously
                    PPop_reg = MatrixMult(PP, dims=nspatprod)
                    if ncp == np:
                        minv = lsqr(PPop_reg, datarn.ravel(),
                                    **kwargs_solver)[0]
                    else:
                        minv = cgls(PPop_reg,
                                    datarn.ravel(),
                                    x0=ncp.zeros(int(PPop_reg.shape[1]),
                                                 PPop_reg.dtype),
                                    **kwargs_solver)[0]
            #else:
            #    # create regularized normal eqs. and solve them simultaneously
            #    PP = np.dot(PPop.A.T, PPop.A) + epsI * np.eye(nt0*nm)
            #    datarn = PPop.A.T * datar.reshape(nt0*ntheta, nspatprod)
            #    PPop_reg = MatrixMult(PP, dims=ntheta*nspatprod)
            #    minv = lstsq(PPop_reg, datarn.flatten(), **kwargs_solver)[0]
        else:
            # solve unregularized normal equations simultaneously with lop
            if ncp == np:
                minv = lsqr(PPop, datar, **kwargs_solver)[0]
            else:
                minv = cgls(PPop,
                            datar,
                            x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                            **kwargs_solver)[0]
    else:
        # Create Thicknov regularization
        if epsI is not None:
            if isinstance(epsI, (list, tuple)):
                if len(epsI) != nm:
                    raise ValueError('epsI must be a scalar or a list of'
                                     'size nm')
                RegI = Diagonal(np.array(epsI),
                                dims=(nt0, nm, nspatprod),
                                dir=1)
            else:
                RegI = epsI * Identity(nt0 * nm * nspatprod)

        if epsRL1 is None:
            # L2 inversion with spatial regularization
            if dims == 1:
                Regop = SecondDerivative(nt0 * nm,
                                         dtype=PPop.dtype,
                                         dims=(nt0, nm))
            elif dims == 2:
                Regop = Laplacian((nt0, nm, nx), dirs=(0, 2), dtype=PPop.dtype)
            else:
                Regop = Laplacian((nt0, nm, nx, ny),
                                  dirs=(2, 3),
                                  dtype=PPop.dtype)
            if epsI is None:
                Regop = (Regop, )
                epsR = (epsR, )
            else:
                Regop = (Regop, RegI)
                epsR = (epsR, 1)
            minv = \
                RegularizedInversion(PPop, Regop, data.ravel(),
                                     x0=m0.flatten() if m0 is not None
                                     else None, epsRs=epsR,
                                     returninfo=False, **kwargs_solver)
        else:
            # Blockiness-promoting inversion with spatial regularization
            if dims == 1:
                RegL1op = FirstDerivative(nt0 * nm, dtype=PPop.dtype)
                RegL2op = None
            elif dims == 2:
                RegL1op = FirstDerivative(nt0 * nx * nm,
                                          dims=(nt0, nm, nx),
                                          dir=0,
                                          dtype=PPop.dtype)
                RegL2op = SecondDerivative(nt0 * nx * nm,
                                           dims=(nt0, nm, nx),
                                           dir=2,
                                           dtype=PPop.dtype)
            else:
                RegL1op = FirstDerivative(nt0 * nx * ny * nm,
                                          dims=(nt0, nm, nx, ny),
                                          dir=0,
                                          dtype=PPop.dtype)
                RegL2op = Laplacian((nt0, nm, nx, ny),
                                    dirs=(2, 3),
                                    dtype=PPop.dtype)
            if dims == 1:
                if epsI is not None:
                    RegL2op = (RegI, )
                    epsR = (1, )
            else:
                if epsI is None:
                    RegL2op = (RegL2op, )
                    epsR = (epsR, )
                else:
                    RegL2op = (RegL2op, RegI)
                    epsR = (epsR, 1)
            epsRL1 = (epsRL1, )
            if 'mu' in kwargs_solver.keys():
                mu = kwargs_solver['mu']
                kwargs_solver.pop('mu')
            else:
                mu = 1.
            if 'niter_outer' in kwargs_solver.keys():
                niter_outer = kwargs_solver['niter_outer']
                kwargs_solver.pop('niter_outer')
            else:
                niter_outer = 3
            if 'niter_inner' in kwargs_solver.keys():
                niter_inner = kwargs_solver['niter_inner']
                kwargs_solver.pop('niter_inner')
            else:
                niter_inner = 5
            minv = SplitBregman(PPop, (RegL1op, ),
                                data.ravel(),
                                RegsL2=RegL2op,
                                epsRL1s=epsRL1,
                                epsRL2s=epsR,
                                mu=mu,
                                niter_outer=niter_outer,
                                niter_inner=niter_inner,
                                x0=None if m0 is None else m0.flatten(),
                                **kwargs_solver)[0]

    # compute residual
    if returnres:
        if epsR is None:
            datar -= PPop * minv.ravel()
        else:
            datar = data.ravel() - PPop * minv.ravel()

    # re-swap axes for explicit operator
    if explicit:
        if m0 is not None:
            m0 = m0.swapaxes(0, 1)

    # reshape inverted model and residual data
    if dims == 1:
        if explicit:
            minv = minv.reshape(nm, nt0).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0).squeeze().swapaxes(
                    0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta).squeeze()
    elif dims == 2:
        if explicit:
            minv = minv.reshape(nm, nt0, nx).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0,
                                      nx).squeeze().swapaxes(
                                          0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm, nx)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta, nx).squeeze()
    else:
        if explicit:
            minv = minv.reshape(nm, nt0, nx, ny).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0, nx,
                                      ny).squeeze().swapaxes(
                                          0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm, nx, ny)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta, nx, ny).squeeze()

    if m0 is not None and epsR is None:
        minv = minv + m0

    if returnres:
        return minv, datar
    else:
        return minv
コード例 #5
0
def UpDownComposition2D(nt,
                        nr,
                        dt,
                        dr,
                        rho,
                        vel,
                        nffts=(None, None),
                        critical=100.,
                        ntaper=10,
                        scaling=1.,
                        dtype='complex128'):
    r"""2D Up-down wavefield composition.

    Apply multi-component seismic wavefield composition from its
    up- and down-going constituents. This input model required by the operator
    should be created by flattening the concatenated separated wavefields of
    size :math:`\lbrack n_r \times n_t \rbrack` along the spatial axis.

    Similarly, the data is also a concatenation of flattened pressure and
    vertical particle velocity wavefields.

    Parameters
    ----------
    nt : :obj:`int`
        Number of samples along the time axis
    nr : :obj:`int`
        Number of samples along the receiver axis
    dt : :obj:`float`
        Sampling along the time axis
    dr : :obj:`float`
        Sampling along the receiver array
    rho : :obj:`float`
        Density along the receiver array (must be constant)
    vel : :obj:`float`
        Velocity along the receiver array (must be constant)
    nffts : :obj:`tuple`, optional
        Number of samples along the wavenumber and frequency axes
    critical : :obj:`float`, optional
        Percentage of angles to retain in obliquity factor. For example, if
        ``critical=100`` only angles below the critical angle
        :math`\frac{f(k_x)}{vel}` will be retained
    ntaper : :obj:`float`, optional
        Number of samples of taper applied to obliquity factor around critical
        angle
    scaling : :obj:`float`, optional
        Scaling to apply to the operator (see Notes for more details)
    dtype : :obj:`str`, optional
        Type of elements in input array.

    Returns
    -------
    UDop : :obj:`pylops.LinearOperator`
        Up-down wavefield composition operator

    See Also
    --------
    WavefieldDecomposition: Wavefield decomposition

    Notes
    -----
    Multi-component seismic data (:math:`p(x, t)` and :math:`v_z(x, t)`) can be
    synthesized in the frequency-wavenumber domain
    as the superposition of the up- and downgoing constituents of
    the pressure wavefield (:math:`p^-(x, t)` and :math:`p^+(x, t)`)
    as follows [1]_:

    .. math::
        \begin{bmatrix}
            \mathbf{p}(k_x, \omega)  \\
            \mathbf{v_z}(k_x, \omega)
        \end{bmatrix} =
        \begin{bmatrix}
            1  & 1 \\
            \frac{k_z}{\omega \rho}  & - \frac{k_z}{\omega \rho}  \\
        \end{bmatrix}
        \begin{bmatrix}
            \mathbf{p^+}(k_x, \omega)  \\
            \mathbf{p^-}(k_x, \omega)
        \end{bmatrix}

    which we can write in a compact matrix-vector notation as:

    .. math::
        \begin{bmatrix}
            \mathbf{p}  \\
            s*\mathbf{v_z}
        \end{bmatrix} =
        \begin{bmatrix}
            \mathbf{F} & 0 \\
            0 & s*\mathbf{F}
        \end{bmatrix} \mathbf{W} \begin{bmatrix}
            \mathbf{F}^H & 0 \\
            0 & \mathbf{F}^H
        \end{bmatrix}  \mathbf{p^{\pm}}

    where :math:`\mathbf{F}` is the 2-dimensional FFT
    (:class:`pylops.signalprocessing.FFT2`),
    :math:`\mathbf{W}` is a weighting matrix implemented
    via :class:`pylops.basicprocessing.Diagonal`, and :math:`s` is a scaling
    factor that is applied to both the particle velocity data and to the
    operator has shown above. Such a scaling is required to balance out the
    different dynamic range of pressure and particle velocity when solving the
    wavefield separation problem as an inverse problem.

    As the operator is effectively obtained by chaining basic PyLops operators
    the adjoint is automatically implemented for this operator.

    .. [1] Wapenaar, K. "Reciprocity properties of one-way propagators",
       Geophysics, vol. 63, pp. 1795-1798. 1998.

    """
    nffts = (int(nffts[0]) if nffts[0] is not None else nr,
             int(nffts[1]) if nffts[1] is not None else nt)

    # create obliquity operator
    FFTop = FFT2D(dims=[nr, nt], nffts=nffts, sampling=[dr, dt], dtype=dtype)
    [Kx, F] = np.meshgrid(FFTop.f1, FFTop.f2, indexing='ij')
    k = F / vel
    Kz = np.sqrt((k**2 - Kx**2).astype(np.complex))
    Kz[np.isnan(Kz)] = 0
    OBL = Kz / (rho * np.abs(F))
    OBL[F == 0] = 0

    # cut off and taper
    OBL = _filter_obliquity(OBL, F, Kx, vel, critical, ntaper)
    OBLop = Diagonal(OBL.ravel(), dtype=dtype)

    # create up-down modelling operator
    UDop = (BlockDiag([FFTop.H, scaling*FFTop.H]) * \
            Block([[Identity(nffts[0]*nffts[1], dtype=dtype),
                    Identity(nffts[0]*nffts[1], dtype=dtype)],
                   [OBLop, -OBLop]]) * \
            BlockDiag([FFTop, FFTop]))

    return UDop
コード例 #6
0
ファイル: oneway.py プロジェクト: mrava87/pylops
def Deghosting(
    p,
    nt,
    nr,
    dt,
    dr,
    vel,
    zrec,
    pd=None,
    win=None,
    npad=(11, 11),
    ntaper=(11, 11),
    restriction=None,
    sptransf=None,
    solver=lsqr,
    dottest=False,
    dtype="complex128",
    **kwargs_solver
):
    r"""Wavefield deghosting.

    Apply seismic wavefield decomposition from single-component (pressure)
    data. This process is also generally referred to as model-based deghosting.

    Parameters
    ----------
    p : :obj:`np.ndarray`
        Pressure data of of size :math:`\lbrack n_{r_x}\,(\times n_{r_y})
        \times n_t \rbrack` (or :math:`\lbrack n_{r_{x,\text{sub}}}\,
        (\times n_{r_{y,\text{sub}}}) \times n_t \rbrack`
        in case a ``restriction`` operator is provided. Note that
        :math:`n_{r_{x,\text{sub}}}` (and :math:`n_{r_{y,\text{sub}}}`)
        must agree with the size of the output of this operator)
    nt : :obj:`int`
        Number of samples along the time axis
    nr : :obj:`int` or :obj:`tuple`
        Number of samples along the receiver axis (or axes)
    dt : :obj:`float`
        Sampling along the time axis
    dr : :obj:`float` or :obj:`tuple`
        Sampling along the receiver array of the separated
        pressure consituents
    vel : :obj:`float`
        Velocity along the receiver array (must be constant)
    zrec : :obj:`float`
        Depth of receiver array
    pd : :obj:`np.ndarray`, optional
        Direct arrival to be subtracted from ``p``
    win : :obj:`np.ndarray`, optional
        Time window to be applied to ``p`` to remove the direct arrival
        (if ``pd=None``)
    ntaper : :obj:`float` or :obj:`tuple`, optional
        Number of samples of taper applied to propagator to avoid edge
        effects
    npad : :obj:`float` or :obj:`tuple`, optional
        Number of samples of padding applied to propagator to avoid edge
        effects
        angle
    restriction : :obj:`pylops.LinearOperator`, optional
        Restriction operator
    sptransf : :obj:`pylops.LinearOperator`, optional
        Sparsifying operator
    solver : :obj:`float`, optional
        Function handle of solver to be used if ``kind='inverse'``
    dottest : :obj:`bool`, optional
        Apply dot-test
    dtype : :obj:`str`, optional
        Type of elements in input array. If ``None``, directly inferred
        from ``p``
    **kwargs_solver
        Arbitrary keyword arguments for chosen ``solver``

    Returns
    -------
    pup : :obj:`np.ndarray`
        Up-going wavefield
    pdown : :obj:`np.ndarray`
        Down-going wavefield

    Notes
    -----
    Up- and down-going components of seismic data :math:`p^-(x, t)`
    and :math:`p^+(x, t)` can be estimated from single-component data
    :math:`p(x, t)` using a ghost model.

    The basic idea [1]_ is that of using a one-way propagator in the f-k domain
    (also referred to as ghost model) to predict the down-going field
    from the up-going one (excluded the direct arrival and its source
    ghost referred here to as :math:`p_d(x, t)`):

    .. math::
        p^+ - p_d = e^{-j k_z 2 z_\text{rec}} p^-

    where :math:`k_z` is the vertical wavenumber and :math:`z_\text{rec}` is the
    depth of the array of receivers

    In a matrix form we can thus write the total wavefield as:

    .. math::
        \mathbf{p} - \mathbf{p_d} = (\mathbf{I} + \Phi) \mathbf{p}^-

    where :math:`\Phi` is one-way propagator implemented via the
    :class:`pylops.waveeqprocessing.PhaseShift` operator.

    .. [1] Amundsen, L., 1993, Wavenumber-based filtering of marine point-source
       data: GEOPHYSICS, 58, 1335–1348.


    """
    ndims = p.ndim
    if ndims == 2:
        dims = (nt, nr)
        nrs = nr
        nkx = nr + 2 * npad
        kx = np.fft.ifftshift(np.fft.fftfreq(nkx, dr))
        ky = None
    else:
        dims = (nt, nr[0], nr[1])
        nrs = nr[0] * nr[1]
        nkx = nr[0] + 2 * npad[0]
        kx = np.fft.ifftshift(np.fft.fftfreq(nkx, dr[0]))
        nky = nr[1] + 2 * npad[1]
        ky = np.fft.ifftshift(np.fft.fftfreq(nky, dr))
    nf = nt
    freq = np.fft.rfftfreq(nf, dt)

    # Phase shift operator
    zprop = 2 * zrec
    if ndims == 2:
        taper = taper2d(nt, nr, ntaper).T
        Padop = Pad(dims, ((0, 0), (npad, npad)))
    else:
        taper = taper3d(nt, nr, ntaper).transpose(2, 0, 1)
        Padop = Pad(dims, ((0, 0), (npad[0], npad[0]), (npad[1], npad[1])))

    Pop = (
        -Padop.H
        * PhaseShift(vel, zprop, nt, freq, kx, ky)
        * Padop
        * Diagonal(taper.ravel(), dtype=dtype)
    )

    # Decomposition operator
    Dupop = Identity(nt * nrs, dtype=p.dtype) + Pop
    if dottest:
        Dottest(Dupop, nt * nrs, nt * nrs, verb=True)

    # Add restriction
    if restriction is not None:
        Dupop_norestr = Dupop
        Dupop = restriction * Dupop

    # Add sparsify transform
    if sptransf is not None:
        Dupop_norestr = Dupop_norestr * sptransf
        Dupop = Dupop * sptransf

    # Define data
    if pd is not None:
        d = p - pd
    else:
        d = win * p

    # Inversion
    pup = solver(Dupop, d.ravel(), **kwargs_solver)[0]

    # Apply sparse transform
    if sptransf is not None:
        p = Dupop_norestr * pup  # reconstruct p at finely sampled spatial axes
        pup = sptransf * pup
        p = np.real(p).reshape(dims)

    # Finalize estimates
    pup = np.real(pup).reshape(dims)
    pdown = p - pup

    return pup, pdown
コード例 #7
0
ファイル: mdd.py プロジェクト: ETDelaney/pylops
def MDC(G,
        nt,
        nv,
        dt=1.,
        dr=1.,
        twosided=True,
        fast=None,
        dtype=None,
        fftengine='numpy',
        transpose=True,
        saveGt=True,
        conj=False):
    r"""Multi-dimensional convolution.

    Apply multi-dimensional convolution between two datasets. If
    ``transpose=True``, model and data should be provided after flattening
    2- or 3-dimensional arrays of size :math:`[n_r (\times n_{vs}) \times n_t]`
    and :math:`[n_s (\times n_{vs}) \times n_t]` (or :math:`2*n_t-1` for
    ``twosided=True``), respectively. If ``transpose=False``, model and data
    should be provided after flattening 2- or 3-dimensional arrays of size
    :math:`[n_t \times n_r (\times n_{vs})]` and
    :math:`[n_t \times n_s (\times n_{vs})]` (or :math:`2*n_t-1` for
    ``twosided=True``), respectively.

    .. warning:: A new implementation of MDC is provided in v1.5.0. This
      currently affects only the inner working of the operator and end-users
      can use the operator in the same way as they used to do with the previous
      one. Nevertheless, it is now reccomended to use the operator with
      ``transpose=False``, as this behaviour will become default in version
      v2.0.0 and the behaviour with ``transpose=True`` will be deprecated.

    Parameters
    ----------
    G : :obj:`numpy.ndarray`
        Multi-dimensional convolution kernel in frequency domain of size
        :math:`[\times n_s \times n_r \times n_{fmax}]` if ``transpose=True``
        or size :math:`[n_{fmax} \times n_s \times n_r]` if ``transpose=False``
    nt : :obj:`int`
        Number of samples along time axis
    nv : :obj:`int`
        Number of samples along virtual source axis
    dt : :obj:`float`, optional
        Sampling of time integration axis
    dr : :obj:`float`, optional
        Sampling of receiver integration axis
    twosided : :obj:`bool`, optional
        MDC operator has both negative and positive time (``True``) or
        only positive (``False``)
    fast : :obj:`bool`, optional
        *Deprecated*, will be removed in v2.0.0
    dtype : :obj:`str`, optional
        *Deprecated*, will be removed in v2.0.0
    fftengine : :obj:`str`, optional
        Engine used for fft computation (``numpy`` or ``fftw``)
    transpose : :obj:`bool`, optional
        Transpose ``G`` and inputs such that time/frequency is placed in first
        dimension. This allows back-compatibility with v1.4.0 and older but
        will be removed in v2.0.0 where time/frequency axis will be required
        to be in first dimension for efficiency reasons.
    saveGt : :obj:`bool`, optional
        Save ``G`` and ``G^H`` to speed up the computation of adjoint of
        :class:`pylops.signalprocessing.Fredholm1` (``True``) or create
        ``G^H`` on-the-fly (``False``) Note that ``saveGt=True`` will be
        faster but double the amount of required memory
    conj : :obj:`str`, optional
        Perform Fredholm integral computation with complex conjugate of ``G``

    See Also
    --------
    MDD : Multi-dimensional deconvolution

    Notes
    -----
    The so-called multi-dimensional convolution (MDC) is a chained
    operator [1]_. It is composed of a forward Fourier transform,
    a multi-dimensional integration, and an inverse Fourier transform:

    .. math::
        y(f, s, v) = \mathscr{F}^{-1} \Big( \int_S G(f, s, r)
        \mathscr{F}(x(f, r, v)) dr \Big)

    This operation can be discretized and performed by means of a
    linear operator

    .. math::
        \mathbf{D}= \mathbf{F}^H  \mathbf{G} \mathbf{F}

    where :math:`\mathbf{F}` is the Fourier transform applied along
    the time axis and :math:`\mathbf{G}` is the multi-dimensional
    convolution kernel.

    .. [1] Wapenaar, K., van der Neut, J., Ruigrok, E., Draganov, D., Hunziker,
       J., Slob, E., Thorbecke, J., and Snieder, R., "Seismic interferometry
       by crosscorrelation and by multi-dimensional deconvolution: a
       systematic comparison", Geophysical Journal International, vol. 185,
       pp. 1335-1364. 2011.

    """
    warnings.warn(
        'A new implementation of MDC is provided in v1.5.0. This '
        'currently affects only the inner working of the operator, '
        'end-users can continue using the operator in the same way. '
        'Nevertheless, it is now recommended to start using the '
        'operator with transpose=True, as this behaviour will '
        'become default in version v2.0.0 and the behaviour with '
        'transpose=False will be deprecated.', FutureWarning)

    if twosided and nt % 2 == 0:
        raise ValueError('nt must be odd number')

    # transpose G
    if transpose:
        G = np.transpose(G, axes=(2, 0, 1))

    # create Fredholm operator
    dtype = G[0, 0, 0].dtype
    fdtype = (G[0, 0, 0] + 1j * G[0, 0, 0]).dtype
    Frop = Fredholm1(dr * dt * np.sqrt(nt) * G,
                     nv,
                     saveGt=saveGt,
                     usematmul=False,
                     dtype=fdtype)
    if conj:
        Frop = Frop.conj()

    # create FFT operators
    nfmax, ns, nr = G.shape
    # ensure that nfmax is not bigger than allowed
    nfft = int(np.ceil((nt + 1) / 2))
    if nfmax > nfft:
        nfmax = nfft
        logging.warning('nfmax set equal to ceil[(nt+1)/2=%d]' % nfmax)

    Fop = FFT(dims=(nt, nr, nv),
              dir=0,
              real=True,
              fftshift=twosided,
              engine=fftengine,
              dtype=fdtype)
    F1op = FFT(dims=(nt, ns, nv),
               dir=0,
               real=True,
               fftshift=False,
               engine=fftengine,
               dtype=fdtype)

    # create Identity operator to extract only relevant frequencies
    Iop = Identity(N=nfmax * nr * nv,
                   M=nfft * nr * nv,
                   inplace=True,
                   dtype=dtype)
    I1op = Identity(N=nfmax * ns * nv,
                    M=nfft * ns * nv,
                    inplace=True,
                    dtype=dtype)
    F1opH = F1op.H
    I1opH = I1op.H

    # create transpose operator
    if transpose:
        dims = [nr, nt] if nv == 1 else [nr, nv, nt]
        axes = (1, 0) if nv == 1 else (2, 0, 1)
        Top = Transpose(dims, axes, dtype=dtype)

        dims = [nt, ns] if nv == 1 else [nt, ns, nv]
        axes = (1, 0) if nv == 1 else (1, 2, 0)
        TopH = Transpose(dims, axes, dtype=dtype)

    # create MDC operator
    MDCop = F1opH * I1opH * Frop * Iop * Fop
    if transpose:
        MDCop = TopH * MDCop * Top
    return MDCop
コード例 #8
0
ファイル: wavedecomposition.py プロジェクト: pgdr/pylops
def UpDownComposition3D(nt,
                        nr,
                        dt,
                        dr,
                        rho,
                        vel,
                        nffts=(None, None, None),
                        critical=100.,
                        ntaper=10,
                        scaling=1.,
                        dtype='complex128'):
    r"""3D Up-down wavefield composition.

    Apply multi-component seismic wavefield composition from its
    up- and down-going constituents. The input model required by the operator
    should be created by flattening the separated wavefields of
    size :math:`\lbrack n_{r_y} \times n_{r_x} \times n_t \rbrack`
    concatenated along the first spatial axis.

    Similarly, the data is also a flattened concatenation of pressure and
    vertical particle velocity wavefields.

    Parameters
    ----------
    nt : :obj:`int`
        Number of samples along the time axis
    nr : :obj:`tuple`
        Number of samples along the receiver axes
    dt : :obj:`float`
        Sampling along the time axis
    dr : :obj:`tuple`
        Samplings along the receiver array
    rho : :obj:`float`
        Density along the receiver array (must be constant)
    vel : :obj:`float`
        Velocity along the receiver array (must be constant)
    nffts : :obj:`tuple`, optional
        Number of samples along the wavenumbers and frequency axes (for the
        wavenumbers axes the same order as ``nr`` and ``dr`` must be followed)
    critical : :obj:`float`, optional
        Percentage of angles to retain in obliquity factor. For example, if
        ``critical=100`` only angles below the critical angle
        :math:`\sqrt{k_y^2 + k_x^2} < \frac{\omega}{vel}` will be retained
    ntaper : :obj:`float`, optional
        Number of samples of taper applied to obliquity factor around critical
        angle
    scaling : :obj:`float`, optional
        Scaling to apply to the operator (see Notes for more details)
    dtype : :obj:`str`, optional
        Type of elements in input array.

    Returns
    -------
    UDop : :obj:`pylops.LinearOperator`
        Up-down wavefield composition operator

    See Also
    --------
    UpDownComposition2D: 2D Wavefield composition
    WavefieldDecomposition: Wavefield decomposition

    Notes
    -----
    Multi-component seismic data (:math:`p(y, x, t)` and :math:`v_z(y, x, t)`)
    can be synthesized in the frequency-wavenumber domain
    as the superposition of the up- and downgoing constituents of
    the pressure wavefield (:math:`p^-(y, x, t)` and :math:`p^+(y, x, t)`)
    as described :class:`pylops.waveeqprocessing.UpDownComposition2D`.

    Here the vertical wavenumber :math:`k_z` is defined as
    :math:`k_z=\sqrt{\omega^2/c^2 - k_y^2 - k_x^2}`.

    """
    nffts = (int(nffts[0]) if nffts[0] is not None else nr[0],
             int(nffts[1]) if nffts[1] is not None else nr[1],
             int(nffts[2]) if nffts[2] is not None else nt)

    # create obliquity operator
    FFTop, OBLop = \
        _obliquity3D(nt, nr, dt, dr, rho, vel,
                     nffts=nffts,
                     critical=critical, ntaper=ntaper,
                     composition=True, dtype=dtype)

    # create up-down modelling operator
    UDop = (BlockDiag([FFTop.H, scaling * FFTop.H]) * \
            Block([[Identity(nffts[0] * nffts[1] * nffts[2], dtype=dtype),
                    Identity(nffts[0] * nffts[1] * nffts[2], dtype=dtype)],
                   [OBLop, -OBLop]]) * \
            BlockDiag([FFTop, FFTop]))
    return UDop
コード例 #9
0
ファイル: marchenko.py プロジェクト: pengalex/pylops
    def apply_multiplepoints(self,
                             trav,
                             G0=None,
                             nfft=None,
                             rtm=False,
                             greens=False,
                             dottest=False,
                             **kwargs_lsqr):
        r"""Marchenko redatuming for multiple points

        Solve the Marchenko redatuming inverse problem for multiple
        points given their direct arrival traveltime curves (``trav``)
        and waveforms (``G0``).

        Parameters
        ----------
        trav : :obj:`numpy.ndarray`
            Traveltime of first arrival from subsurface points to
            surface receivers of size :math:`[n_r \times n_{vs}]`
        G0 : :obj:`numpy.ndarray`, optional
            Direct arrival in time domain of size
            :math:`[n_r \times n_{vs} \times n_t]` (if None, create arrival
            using ``trav``)
        nfft : :obj:`int`, optional
            Number of samples in fft when creating the analytical direct wave
        rtm : :obj:`bool`, optional
            Compute and return rtm redatuming
        greens : :obj:`bool`, optional
            Compute and return Green's functions
        dottest : :obj:`bool`, optional
            Apply dot-test
        **kwargs_lsqr
            Arbitrary keyword arguments
            for :py:func:`scipy.sparse.linalg.lsqr` solver

        Returns
        ----------
        f1_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing focusing function of size
            :math:`[n_r \times n_{vs} \times n_t]`
        f1_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing focusing functionof size
            :math:`[n_r \times n_{vs} \times n_t]`
        p0_minus : :obj:`numpy.ndarray`
            Single-scattering standard redatuming upgoing Green's function
            of size :math:`[n_r \times n_{vs} \times n_t]`
        g_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing Green's function of size
            :math:`[n_r \times n_{vs} \times n_t]`
        g_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing Green's function of size
            :math:`[n_r \times n_{vs} \times n_t]`

        """
        nvs = trav.shape[1]

        # Create window
        trav_off = trav - self.toff
        trav_off = np.round(trav_off / self.dt).astype(np.int)

        w = np.zeros((self.nr, nvs, self.nt))
        for ir in range(self.nr):
            for ivs in range(nvs):
                w[ir, ivs, :trav_off[ir, ivs]] = 1
        w = np.concatenate((np.flip(w, axis=-1), w[:, :, 1:]), axis=-1)
        if self.nsmooth > 0:
            smooth = np.ones(self.nsmooth) / self.nsmooth
            w = filtfilt(smooth, 1, w)

        # Create operators
        Rop = MDC(self.Rtwosided_fft,
                  self.nt2,
                  nv=nvs,
                  dt=self.dt,
                  dr=self.dr,
                  twosided=True,
                  conj=False,
                  transpose=False,
                  prescaled=self.prescaled,
                  dtype=self.dtype)
        R1op = MDC(self.Rtwosided_fft,
                   self.nt2,
                   nv=nvs,
                   dt=self.dt,
                   dr=self.dr,
                   twosided=True,
                   conj=True,
                   transpose=False,
                   prescaled=self.prescaled,
                   dtype=self.dtype)
        Rollop = Roll(self.ns * nvs * self.nt2,
                      dims=(self.nt2, self.ns, nvs),
                      dir=0,
                      shift=-1,
                      dtype=self.dtype)
        Wop = Diagonal(w.transpose(2, 0, 1).flatten())
        Iop = Identity(self.nr * nvs * self.nt2)
        Mop = Block([[Iop, -1 * Wop * Rop], [-1 * Wop * Rollop * R1op, Iop]
                     ]) * BlockDiag([Wop, Wop])
        Gop = Block([[Iop, -1 * Rop], [-1 * Rollop * R1op, Iop]])

        if dottest:
            Dottest(Gop,
                    2 * self.nr * nvs * self.nt2,
                    2 * self.nr * nvs * self.nt2,
                    raiseerror=True,
                    verb=True)
        if dottest:
            Dottest(Mop,
                    2 * self.ns * nvs * self.nt2,
                    2 * self.nr * nvs * self.nt2,
                    raiseerror=True,
                    verb=True)

        # Create input focusing function
        if G0 is None:
            if self.wav is not None and nfft is not None:
                G0 = np.zeros((self.nr, nvs, self.nt))
                for ivs in range(nvs):
                    G0[:, ivs] = (directwave(self.wav,
                                             trav[:, ivs],
                                             self.nt,
                                             self.dt,
                                             nfft=nfft,
                                             derivative=True)).T
            else:
                logging.error('wav and/or nfft are not provided. '
                              'Provide either G0 or wav and nfft...')
                raise ValueError('wav and/or nfft are not provided. '
                                 'Provide either G0 or wav and nfft...')

        fd_plus = np.concatenate((np.flip(G0, axis=-1).transpose(2, 0, 1),
                                  np.zeros((self.nt - 1, self.nr, nvs))))

        # Run standard redatuming as benchmark
        if rtm:
            p0_minus = Rop * fd_plus.flatten()
            p0_minus = p0_minus.reshape(self.nt2, self.ns,
                                        nvs).transpose(1, 2, 0)

        # Create data and inverse focusing functions
        d = Wop * Rop * fd_plus.flatten()
        d = np.concatenate((d.reshape(self.nt2, self.ns,
                                      nvs), np.zeros(
                                          (self.nt2, self.ns, nvs))))

        # Invert for focusing functions
        f1_inv = lsqr(Mop, d.flatten(), **kwargs_lsqr)[0]
        f1_inv = f1_inv.reshape(2 * self.nt2, self.nr, nvs)
        f1_inv_tot = \
            f1_inv + np.concatenate((np.zeros((self.nt2, self.nr, nvs)),
                                     fd_plus))
        f1_inv_minus = f1_inv_tot[:self.nt2].transpose(1, 2, 0)
        f1_inv_plus = f1_inv_tot[self.nt2:].transpose(1, 2, 0)

        if greens:
            # Create Green's functions
            g_inv = Gop * f1_inv_tot.flatten()
            g_inv = np.real(g_inv)  # cast to real as Gop is a complex operator
            g_inv = g_inv.reshape(2 * self.nt2, self.ns, nvs)
            g_inv_minus = -g_inv[:self.nt2].transpose(1, 2, 0)
            g_inv_plus = np.flip(g_inv[self.nt2:], axis=0).transpose(1, 2, 0)

        if rtm and greens:
            return f1_inv_minus, f1_inv_plus, p0_minus, g_inv_minus, g_inv_plus
        elif rtm:
            return f1_inv_minus, f1_inv_plus, p0_minus
        elif greens:
            return f1_inv_minus, f1_inv_plus, g_inv_minus, g_inv_plus
        else:
            return f1_inv_minus, f1_inv_plus
コード例 #10
0
    def apply_multiplepoints(self,
                             trav,
                             G0=None,
                             nfft=None,
                             rtm=False,
                             greens=False,
                             dottest=False,
                             usematmul=False,
                             **kwargs_solver):
        r"""Marchenko redatuming for multiple points

        Solve the Marchenko redatuming inverse problem for multiple
        points given their direct arrival traveltime curves (``trav``)
        and waveforms (``G0``).

        Parameters
        ----------
        trav : :obj:`numpy.ndarray`
            Traveltime of first arrival from subsurface points to
            surface receivers of size :math:`[n_r \times n_{vs}]`
        G0 : :obj:`numpy.ndarray`, optional
            Direct arrival in time domain of size
            :math:`[n_r \times n_{vs} \times n_t]` (if None, create arrival
            using ``trav``)
        nfft : :obj:`int`, optional
            Number of samples in fft when creating the analytical direct wave
        rtm : :obj:`bool`, optional
            Compute and return rtm redatuming
        greens : :obj:`bool`, optional
            Compute and return Green's functions
        dottest : :obj:`bool`, optional
            Apply dot-test
        usematmul : :obj:`bool`, optional
            Use :func:`numpy.matmul` (``True``) or for-loop with :func:`numpy.dot`
            (``False``) in :py:class:`pylops.signalprocessing.Fredholm1` operator.
            Refer to Fredholm1 documentation for details.
        **kwargs_solver
            Arbitrary keyword arguments for chosen solver
            (:py:func:`scipy.sparse.linalg.lsqr` and
            :py:func:`pylops.optimization.solver.cgls` are used as default
            for numpy and cupy `data`, respectively)

        Returns
        ----------
        f1_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing focusing function of size
            :math:`[n_r \times n_{vs} \times n_t]`
        f1_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing focusing functionof size
            :math:`[n_r \times n_{vs} \times n_t]`
        p0_minus : :obj:`numpy.ndarray`
            Single-scattering standard redatuming upgoing Green's function
            of size :math:`[n_r \times n_{vs} \times n_t]`
        g_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing Green's function of size
            :math:`[n_r \times n_{vs} \times n_t]`
        g_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing Green's function of size
            :math:`[n_r \times n_{vs} \times n_t]`

        """
        nvs = trav.shape[1]

        # Create window
        trav_off = trav - self.toff
        trav_off = np.round(trav_off / self.dt).astype(int)

        w = np.zeros((self.nr, nvs, self.nt), dtype=self.dtype)
        for ir in range(self.nr):
            for ivs in range(nvs):
                w[ir, ivs, :trav_off[ir, ivs]] = 1
        w = np.concatenate((np.flip(w, axis=-1), w[:, :, 1:]), axis=-1)
        if self.nsmooth > 0:
            smooth = np.ones(self.nsmooth, dtype=self.dtype) / self.nsmooth
            w = filtfilt(smooth, 1, w)
        w = to_cupy_conditional(self.Rtwosided_fft, w)

        # Create operators
        Rop = MDC(
            self.Rtwosided_fft,
            self.nt2,
            nv=nvs,
            dt=self.dt,
            dr=self.dr,
            twosided=True,
            conj=False,
            fftengine=self.fftengine,
            transpose=False,
            prescaled=self.prescaled,
            usematmul=usematmul,
            dtype=self.dtype,
        )
        R1op = MDC(
            self.Rtwosided_fft,
            self.nt2,
            nv=nvs,
            dt=self.dt,
            dr=self.dr,
            twosided=True,
            conj=True,
            fftengine=self.fftengine,
            transpose=False,
            prescaled=self.prescaled,
            usematmul=usematmul,
            dtype=self.dtype,
        )
        Rollop = Roll(
            self.ns * nvs * self.nt2,
            dims=(self.nt2, self.ns, nvs),
            dir=0,
            shift=-1,
            dtype=self.dtype,
        )
        Wop = Diagonal(w.transpose(2, 0, 1).ravel())
        Iop = Identity(self.nr * nvs * self.nt2)
        Mop = Block([[Iop, -1 * Wop * Rop], [-1 * Wop * Rollop * R1op, Iop]
                     ]) * BlockDiag([Wop, Wop])
        Gop = Block([[Iop, -1 * Rop], [-1 * Rollop * R1op, Iop]])

        if dottest:
            Dottest(
                Gop,
                2 * self.nr * nvs * self.nt2,
                2 * self.nr * nvs * self.nt2,
                raiseerror=True,
                verb=True,
                backend=get_module_name(self.ncp),
            )
        if dottest:
            Dottest(
                Mop,
                2 * self.ns * nvs * self.nt2,
                2 * self.nr * nvs * self.nt2,
                raiseerror=True,
                verb=True,
                backend=get_module_name(self.ncp),
            )

        # Create input focusing function
        if G0 is None:
            if self.wav is not None and nfft is not None:
                G0 = np.zeros((self.nr, nvs, self.nt), dtype=self.dtype)
                for ivs in range(nvs):
                    G0[:, ivs] = (directwave(
                        self.wav,
                        trav[:, ivs],
                        self.nt,
                        self.dt,
                        nfft=nfft,
                        derivative=True,
                    )).T
                G0 = to_cupy_conditional(self.Rtwosided_fft, G0)
            else:
                logging.error("wav and/or nfft are not provided. "
                              "Provide either G0 or wav and nfft...")
                raise ValueError("wav and/or nfft are not provided. "
                                 "Provide either G0 or wav and nfft...")
        fd_plus = np.concatenate((
            np.flip(G0, axis=-1).transpose(2, 0, 1),
            self.ncp.zeros((self.nt - 1, self.nr, nvs), dtype=self.dtype),
        ))

        # Run standard redatuming as benchmark
        if rtm:
            p0_minus = Rop * fd_plus.ravel()
            p0_minus = p0_minus.reshape(self.nt2, self.ns,
                                        nvs).transpose(1, 2, 0)

        # Create data and inverse focusing functions
        d = Wop * Rop * fd_plus.ravel()
        d = np.concatenate((
            d.reshape(self.nt2, self.ns, nvs),
            self.ncp.zeros((self.nt2, self.ns, nvs), dtype=self.dtype),
        ))

        # Invert for focusing functions
        if self.ncp == np:
            f1_inv = lsqr(Mop, d.ravel(), **kwargs_solver)[0]
        else:
            f1_inv = cgls(Mop,
                          d.ravel(),
                          x0=self.ncp.zeros(2 * (2 * self.nt - 1) * self.nr *
                                            nvs,
                                            dtype=self.dtype),
                          **kwargs_solver)[0]

        f1_inv = f1_inv.reshape(2 * self.nt2, self.nr, nvs)
        f1_inv_tot = f1_inv + np.concatenate((self.ncp.zeros(
            (self.nt2, self.nr, nvs), dtype=self.dtype), fd_plus))
        f1_inv_minus = f1_inv_tot[:self.nt2].transpose(1, 2, 0)
        f1_inv_plus = f1_inv_tot[self.nt2:].transpose(1, 2, 0)

        if greens:
            # Create Green's functions
            g_inv = Gop * f1_inv_tot.ravel()
            g_inv = g_inv.reshape(2 * self.nt2, self.ns, nvs)
            g_inv_minus = -g_inv[:self.nt2].transpose(1, 2, 0)
            g_inv_plus = np.flip(g_inv[self.nt2:], axis=0).transpose(1, 2, 0)

        if rtm and greens:
            return f1_inv_minus, f1_inv_plus, p0_minus, g_inv_minus, g_inv_plus
        elif rtm:
            return f1_inv_minus, f1_inv_plus, p0_minus
        elif greens:
            return f1_inv_minus, f1_inv_plus, g_inv_minus, g_inv_plus
        else:
            return f1_inv_minus, f1_inv_plus
コード例 #11
0
    def apply_onepoint(self,
                       trav,
                       G0=None,
                       nfft=None,
                       rtm=False,
                       greens=False,
                       dottest=False,
                       fast=True,
                       **kwargs_lsqr):
        r"""Marchenko redatuming for one point

        Solve the Marchenko redatuming inverse problem for a single point given its
        direct arrival traveltime curve (``trav``) and waveform (``G0``).

        Parameters
        ----------
        trav : :obj:`numpy.ndarray`
            Traveltime of first arrival from subsurface point to surface receivers
            of size :math:`[n_r \times 1]`
        G0 : :obj:`numpy.ndarray`, optional
            Direct arrival in time domain of size :math:`[n_r \times n_t]`
            (if None, create arrival using ``trav``)
        nfft : :obj:`int`, optional
            Number of samples in fft when creating the analytical direct wave
        rtm : :obj:`bool`, optional
            Compute and return rtm redatuming
        greens : :obj:`bool`, optional
            Compute and return Green's functions
        dottest : :obj:`bool`, optional
            Apply dot-test
        fast : :obj:`bool`
            Fast application of MDC when model has only one virtual source
            (``True``) or not (``False``)
        **kwargs_lsqr
            Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.lsqr` solver

        Returns
        ----------
        f1_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing focusing function of size :math:`[n_r \times n_t]`
        f1_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing focusing function of size :math:`[n_r \times n_t]`
        p0_minus : :obj:`numpy.ndarray`
            Single-scattering standard redatuming upgoing Green's function of
            size :math:`[n_r \times n_t]`
        g_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing Green's function of size :math:`[n_r \times n_t]`
        g_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing Green's function of size :math:`[n_r \times n_t]`

        """
        # Create window
        trav_off = trav - self.toff
        trav_off = np.round(trav_off / self.dt).astype(np.int)

        # window
        w = np.zeros((self.nr, self.nt))
        for ir in range(self.nr):
            w[ir, :trav_off[ir]] = 1
        w = np.hstack((np.fliplr(w), w[:, 1:]))
        if self.nsmooth > 0:
            smooth = np.ones(self.nsmooth) / self.nsmooth
            w = filtfilt(smooth, 1, w)

        # Create operators
        Rop = MDC(self.Rtwosided_fft,
                  self.nt2,
                  nv=1,
                  dt=self.dt,
                  dr=self.dr,
                  twosided=True,
                  fast=fast,
                  dtype=self.dtype)
        R1op = MDC(self.R1twosided_fft,
                   self.nt2,
                   nv=1,
                   dt=self.dt,
                   dr=self.dr,
                   twosided=True,
                   fast=fast,
                   dtype=self.dtype)

        Wop = Diagonal(w.flatten())
        Iop = Identity(self.nr * (2 * self.nt - 1))
        Mop = VStack(
            [HStack([Iop, -1 * Wop * Rop]),
             HStack([-1 * Wop * R1op, Iop])]) * BlockDiag([Wop, Wop])
        Gop = VStack([HStack([Iop, -1 * Rop]), HStack([-1 * R1op, Iop])])

        if dottest:
            assert Dottest(Gop,
                           2 * self.nr * self.nt2,
                           2 * self.nr * self.nt2,
                           verb=True)
        if dottest:
            assert Dottest(Mop,
                           2 * self.nr * self.nt2,
                           2 * self.nr * self.nt2,
                           verb=True)

        # Create input focusing function
        if G0 is None:
            if self.wav is not None and nfft is not None:
                G0 = (directwave(self.wav, trav, self.nt, self.dt,
                                 nfft=nfft)).T
            else:
                logging.error('wav and/or nfft are not provided. '
                              'Provide either G0 or wav and nfft...')
                raise ValueError('wav and/or nfft are not provided. '
                                 'Provide either G0 or wav and nfft...')

        fd_plus = np.concatenate(
            (np.fliplr(G0), np.zeros((self.nr, self.nt - 1))), axis=-1)

        # Run standard redatuming as benchmark
        if rtm:
            p0_minus = Rop * fd_plus.flatten()
            p0_minus = p0_minus.reshape(self.nr, self.nt2)

        # Create data and inverse focusing functions
        d = Wop * Rop * fd_plus.flatten()
        d = np.concatenate(
            (d.reshape(self.nr, self.nt2), np.zeros((self.nr, self.nt2))))

        f1_inv = lsqr(Mop, d.flatten(), **kwargs_lsqr)[0]
        f1_inv = f1_inv.reshape(2 * self.nr, self.nt2)

        f1_inv_tot = f1_inv + np.concatenate((np.zeros(
            (self.nr, self.nt2)), fd_plus))
        f1_inv_minus, f1_inv_plus = f1_inv_tot[:self.nr], f1_inv_tot[self.nr:]

        if greens:
            # Create Green's functions
            g_inv = Gop * f1_inv_tot.flatten()
            g_inv = g_inv.reshape(2 * self.nr, (2 * self.nt - 1))
            g_inv_minus, g_inv_plus = -g_inv[:self.nr], np.fliplr(
                g_inv[self.nr:])

        if rtm and greens:
            return f1_inv_minus, f1_inv_plus, p0_minus, g_inv_minus, g_inv_plus
        elif rtm:
            return f1_inv_minus, f1_inv_plus, p0_minus
        elif greens:
            return f1_inv_minus, f1_inv_plus, g_inv_minus, g_inv_plus
        else:
            return f1_inv_minus, f1_inv_plus
コード例 #12
0
    def apply_onepoint(self,
                       trav,
                       G0=None,
                       nfft=None,
                       rtm=False,
                       greens=False,
                       dottest=False,
                       fast=None,
                       **kwargs_solver):
        r"""Marchenko redatuming for one point

        Solve the Marchenko redatuming inverse problem for a single point
        given its direct arrival traveltime curve (``trav``)
        and waveform (``G0``).

        Parameters
        ----------
        trav : :obj:`numpy.ndarray`
            Traveltime of first arrival from subsurface point to
            surface receivers of size :math:`[n_r \times 1]`
        G0 : :obj:`numpy.ndarray`, optional
            Direct arrival in time domain of size :math:`[n_r \times n_t]`
            (if None, create arrival using ``trav``)
        nfft : :obj:`int`, optional
            Number of samples in fft when creating the analytical direct wave
        rtm : :obj:`bool`, optional
            Compute and return rtm redatuming
        greens : :obj:`bool`, optional
            Compute and return Green's functions
        dottest : :obj:`bool`, optional
            Apply dot-test
        fast : :obj:`bool`
            *Deprecated*, will be removed in v2.0.0
        **kwargs_solver
            Arbitrary keyword arguments for chosen solver
            (:py:func:`scipy.sparse.linalg.lsqr` and
            :py:func:`pylops.optimization.solver.cgls` are used as default
            for numpy and cupy `data`, respectively)

        Returns
        ----------
        f1_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing focusing function of size :math:`[n_r \times n_t]`
        f1_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing focusing function
            of size :math:`[n_r \times n_t]`
        p0_minus : :obj:`numpy.ndarray`
            Single-scattering standard redatuming upgoing Green's function of
            size :math:`[n_r \times n_t]`
        g_inv_minus : :obj:`numpy.ndarray`
            Inverted upgoing Green's function of size :math:`[n_r \times n_t]`
        g_inv_plus : :obj:`numpy.ndarray`
            Inverted downgoing Green's function
            of size :math:`[n_r \times n_t]`

        """
        # Create window
        trav_off = trav - self.toff
        trav_off = np.round(trav_off / self.dt).astype(np.int)

        w = np.zeros((self.nr, self.nt), dtype=self.dtype)
        for ir in range(self.nr):
            w[ir, :trav_off[ir]] = 1
        w = np.hstack((np.fliplr(w), w[:, 1:]))
        if self.nsmooth > 0:
            smooth = np.ones(self.nsmooth, dtype=self.dtype) / self.nsmooth
            w = filtfilt(smooth, 1, w)
        w = to_cupy_conditional(self.Rtwosided_fft, w)

        # Create operators
        Rop = MDC(self.Rtwosided_fft,
                  self.nt2,
                  nv=1,
                  dt=self.dt,
                  dr=self.dr,
                  twosided=True,
                  conj=False,
                  transpose=False,
                  saveGt=self.saveRt,
                  prescaled=self.prescaled,
                  dtype=self.dtype)
        R1op = MDC(self.Rtwosided_fft,
                   self.nt2,
                   nv=1,
                   dt=self.dt,
                   dr=self.dr,
                   twosided=True,
                   conj=True,
                   transpose=False,
                   saveGt=self.saveRt,
                   prescaled=self.prescaled,
                   dtype=self.dtype)
        Rollop = Roll(self.nt2 * self.ns,
                      dims=(self.nt2, self.ns),
                      dir=0,
                      shift=-1,
                      dtype=self.dtype)
        Wop = Diagonal(w.T.flatten())
        Iop = Identity(self.nr * self.nt2)
        Mop = Block([[Iop, -1 * Wop * Rop], [-1 * Wop * Rollop * R1op, Iop]
                     ]) * BlockDiag([Wop, Wop])
        Gop = Block([[Iop, -1 * Rop], [-1 * Rollop * R1op, Iop]])

        if dottest:
            Dottest(Gop,
                    2 * self.ns * self.nt2,
                    2 * self.nr * self.nt2,
                    raiseerror=True,
                    verb=True,
                    backend=get_module_name(self.ncp))
        if dottest:
            Dottest(Mop,
                    2 * self.ns * self.nt2,
                    2 * self.nr * self.nt2,
                    raiseerror=True,
                    verb=True,
                    backend=get_module_name(self.ncp))

        # Create input focusing function
        if G0 is None:
            if self.wav is not None and nfft is not None:
                G0 = (directwave(self.wav,
                                 trav,
                                 self.nt,
                                 self.dt,
                                 nfft=nfft,
                                 derivative=True)).T
                G0 = to_cupy_conditional(self.Rtwosided_fft, G0)
            else:
                logging.error('wav and/or nfft are not provided. '
                              'Provide either G0 or wav and nfft...')
                raise ValueError('wav and/or nfft are not provided. '
                                 'Provide either G0 or wav and nfft...')
        fd_plus = np.concatenate((np.fliplr(G0).T,
                                  self.ncp.zeros((self.nt - 1, self.nr),
                                                 dtype=self.dtype)))

        # Run standard redatuming as benchmark
        if rtm:
            p0_minus = Rop * fd_plus.flatten()
            p0_minus = p0_minus.reshape(self.nt2, self.ns).T

        # Create data and inverse focusing functions
        d = Wop * Rop * fd_plus.flatten()
        d = np.concatenate((d.reshape(self.nt2, self.ns),
                            self.ncp.zeros((self.nt2, self.ns), self.dtype)))

        # Invert for focusing functions
        if self.ncp == np:
            f1_inv = lsqr(Mop, d.flatten(), **kwargs_solver)[0]
        else:
            f1_inv = cgls(Mop,
                          d.flatten(),
                          x0=self.ncp.zeros(2 * (2 * self.nt - 1) * self.nr,
                                            dtype=self.dtype),
                          **kwargs_solver)[0]

        f1_inv = f1_inv.reshape(2 * self.nt2, self.nr)
        f1_inv_tot = f1_inv + np.concatenate((self.ncp.zeros(
            (self.nt2, self.nr), dtype=self.dtype), fd_plus))
        f1_inv_minus = f1_inv_tot[:self.nt2].T
        f1_inv_plus = f1_inv_tot[self.nt2:].T
        if greens:
            # Create Green's functions
            g_inv = Gop * f1_inv_tot.flatten()
            g_inv = g_inv.reshape(2 * self.nt2, self.ns)
            g_inv_minus, g_inv_plus = -g_inv[:self.nt2].T, \
                                      np.fliplr(g_inv[self.nt2:].T)
        if rtm and greens:
            return f1_inv_minus, f1_inv_plus, p0_minus, g_inv_minus, g_inv_plus
        elif rtm:
            return f1_inv_minus, f1_inv_plus, p0_minus
        elif greens:
            return f1_inv_minus, f1_inv_plus, g_inv_minus, g_inv_plus
        else:
            return f1_inv_minus, f1_inv_plus
コード例 #13
0
def UpDownComposition2D(
    nt,
    nr,
    dt,
    dr,
    rho,
    vel,
    nffts=(None, None),
    critical=100.0,
    ntaper=10,
    scaling=1.0,
    backend="numpy",
    dtype="complex128",
):
    r"""2D Up-down wavefield composition.

    Apply multi-component seismic wavefield composition from its
    up- and down-going constituents. The input model required by the operator
    should be created by flattening the separated wavefields of
    size :math:`\lbrack n_r \times n_t \rbrack` concatenated along the
    spatial axis.

    Similarly, the data is also a flattened concatenation of pressure and
    vertical particle velocity wavefields.

    Parameters
    ----------
    nt : :obj:`int`
        Number of samples along the time axis
    nr : :obj:`int`
        Number of samples along the receiver axis
    dt : :obj:`float`
        Sampling along the time axis
    dr : :obj:`float`
        Sampling along the receiver array
    rho : :obj:`float`
        Density :math:`\rho` along the receiver array (must be constant)
    vel : :obj:`float`
        Velocity :math:`c` along the receiver array (must be constant)
    nffts : :obj:`tuple`, optional
        Number of samples along the wavenumber and frequency axes
    critical : :obj:`float`, optional
        Percentage of angles to retain in obliquity factor. For example, if
        ``critical=100`` only angles below the critical angle
        :math:`|k_x| < \frac{f(k_x)}{c}` will be retained
        will be retained
    ntaper : :obj:`float`, optional
        Number of samples of taper applied to obliquity factor around critical
        angle
    scaling : :obj:`float`, optional
        Scaling to apply to the operator (see Notes for more details)
    backend : :obj:`str`, optional
        Backend used for creation of obliquity factor operator
        (``numpy`` or ``cupy``)
    dtype : :obj:`str`, optional
        Type of elements in input array.

    Returns
    -------
    UDop : :obj:`pylops.LinearOperator`
        Up-down wavefield composition operator

    See Also
    --------
    UpDownComposition3D: 3D Wavefield composition
    WavefieldDecomposition: Wavefield decomposition

    Notes
    -----
    Multi-component seismic data :math:`p(x, t)` and :math:`v_z(x, t)` can be
    synthesized in the frequency-wavenumber domain
    as the superposition of the up- and downgoing constituents of
    the pressure wavefield (:math:`p^-(x, t)` and :math:`p^+(x, t)`)
    as follows [1]_:

    .. math::
        \begin{bmatrix}
            \hat{p}  \\
            \hat{v_z}
        \end{bmatrix}(k_x, \omega) =
        \begin{bmatrix}
            1  & 1 \\
            \frac{k_z}{\omega \rho}  & - \frac{k_z}{\omega \rho}  \\
        \end{bmatrix}
        \begin{bmatrix}
            \hat{p^+}  \\
            \hat{p^-}
        \end{bmatrix}(k_x, \omega)

    where the vertical wavenumber :math:`k_z` is defined as
    :math:`k_z=\sqrt{\frac{\omega^2}{c^2} - k_x^2}`.

    We can write the entire composition process in a compact
    matrix-vector notation as follows:

    .. math::
        \begin{bmatrix}
            \mathbf{p}  \\
            s\mathbf{v_z}
        \end{bmatrix} =
        \begin{bmatrix}
            \mathbf{F} & 0 \\
            0 & s\mathbf{F}
        \end{bmatrix} \begin{bmatrix}
            \mathbf{I} & \mathbf{I} \\
            \mathbf{W}^+ & \mathbf{W}^-
        \end{bmatrix} \begin{bmatrix}
            \mathbf{F}^H & 0 \\
            0 & \mathbf{F}^H
        \end{bmatrix}  \mathbf{p^{\pm}}

    where :math:`\mathbf{F}` is the 2-dimensional FFT
    (:class:`pylops.signalprocessing.FFT2`),
    :math:`\mathbf{W}^\pm` are weighting matrices which contain the scalings
    :math:`\pm \frac{k_z}{\omega \rho}` implemented via
    :class:`pylops.basicprocessing.Diagonal`, and :math:`s` is a scaling
    factor that is applied to both the particle velocity data and to the
    operator has shown above. Such a scaling is required to balance out the
    different dynamic range of pressure and particle velocity when solving the
    wavefield separation problem as an inverse problem.

    As the operator is effectively obtained by chaining basic PyLops operators
    the adjoint is automatically implemented for this operator.

    .. [1] Wapenaar, K. "Reciprocity properties of one-way propagators",
       Geophysics, vol. 63, pp. 1795-1798. 1998.

    """
    nffts = (
        int(nffts[0]) if nffts[0] is not None else nr,
        int(nffts[1]) if nffts[1] is not None else nt,
    )

    # create obliquity operator
    FFTop, OBLop, = _obliquity2D(
        nt,
        nr,
        dt,
        dr,
        rho,
        vel,
        nffts=nffts,
        critical=critical,
        ntaper=ntaper,
        composition=True,
        backend=backend,
        dtype=dtype,
    )

    # create up-down modelling operator
    UDop = (BlockDiag([FFTop.H, scaling * FFTop.H]) * Block([
        [
            Identity(nffts[0] * nffts[1], dtype=dtype),
            Identity(nffts[0] * nffts[1], dtype=dtype),
        ],
        [OBLop, -OBLop],
    ]) * BlockDiag([FFTop, FFTop]))
    return UDop