コード例 #1
0
def annotationsFi2instances(annFi,
                            m,
                            tf,
                            labelsHierarchy=None,
                            gaps='b',
                            sep=None):
    """reads annotations from file into instances
    Parameters
    ----------
    annFi: str
        path to file
    m: int
        number of instances
    labelsHierarchy: list like object
        hierarchy of the annotations in case of overlaps.
        Only one label per instance, eg = ['c', 'w']
    gaps: string,
        label for the gaps
    Returns
    -------
    labels_arr: ndarray (m, )
        array with the instance labels"""
    if labelsHierarchy is None:
        labelsHierarchy = ['c', 'w']
    T, L = annT.anns2TLndarrays(annFi, sep=sep)
    if tf == 'auto':
        tf = T[-1, -1] + 0.1
    return annotations2instanceArray(T,
                                     L,
                                     m,
                                     tf,
                                     labelsHierarchy=labelsHierarchy)
コード例 #2
0
ファイル: audioFeatures.py プロジェクト: cmaureir/pylotwhale
def annotationsFi2instances(annFi, m, tf, labelsHierarchy=None, gaps="b"):
    """reads annotations from file into instances"""
    if labelsHierarchy is None:
        labelsHierarchy = ["c", "w"]
    T, L = annT.anns2TLndarrays(annFi)
    if tf == "auto":
        tf = T[-1, -1] + 0.1
    return annotations2instanceArray(T, L, m, tf, labelsHierarchy=labelsHierarchy)
コード例 #3
0
def test_predictions():
    
    # predict annotations
    wF =  os.path.join(pDir, 'data/WAV_0111_001-48kHz_30-60sec.wav')
    anF =  os.path.join(pDir, 'data/WAV_0111_001-48kHz_30-60sec.txt')
    predsF1 =  os.path.join(pDir, 'data/WAV_0111_001-48kHz_30-60sec-preds0.txt')
    pre.predictAnnotationSections(wF, anF, clf, feExFun, lt, outFile=predsF1 )
    predsF2 =  os.path.join(pDir, 'data/WAV_0111_001-48kHz_30-60sec-preds0.txt')
    pre.predictAnnotationSections0(wF, anF, clf, feExFun, lt, outFile=predsF2 )
    
    ## load annotations into T, L format
    Tfi1, Lfi1 = annT.anns2TLndarrays( predsF1, Tcols=(0,1), Lcols=(-1,))
    Tfi2, Lfi2 = annT.anns2TLndarrays( predsF2, Tcols=(0,1), Lcols=(-1,))
    
    # test both prediction types
    np.testing.assert_array_equal(Lfi1, Lfi2)
    np.testing.assert_array_equal(Tfi1, Tfi2)
    
    # test one more prediction mode
    Tp, Lp = pre.TLpredictAnnotationSections( wF, anF, clf, feExFun, lt)
    np.testing.assert_array_equal(Lfi1, Lp)
    np.testing.assert_array_equal(Tfi1, Tp)
コード例 #4
0
def TLpredictAnnotationSections(wavF,
                                annF,
                                clf,
                                featExtFun,
                                lt,
                                printProbs=False,
                                readSections=None,
                                printreadSectionsC=True):
    """generates annotations predicting audio section classes
    Parameters
    ----------
    wavF : str
    annF : str
        path to the file with the annotation section to predict
    clf : estimator
    featExtFun : callable
    lt : labelTransformer
    printProbs : bool
    readSections : list of str
        regions in the annF for which we predict
    printreadSectionsC : bool
    """

    ## load annotations
    waveform, fs = sT.wav2waveform(wavF)
    T, L0 = annT.anns2TLndarrays(annF)
    ## set of annotation-sections to predict
    if readSections is None:
        readSections = np.array(list(set(L0)))
    ## filter for sections of interest
    IO_sections = np.isin(L0, readSections)
    Tp = T[IO_sections]
    L = L0[IO_sections]
    Lp = np.zeros_like(L)
    ## for each annotation section
    for i, label in enumerate(L):  # for each section
        waveformSec = auf.getWavSec(waveform, fs,
                                    *Tp[i])  # load waveform section
        M0 = featExtFun(waveformSec)  # extract features
        M = np.expand_dims(M0.flatten(), axis=0)
        Lp[i] = lt.num2nom(clf.predict(M))[0]  # predict

    return Tp, Lp
コード例 #5
0
ファイル: audioFeatures.py プロジェクト: cmaureir/pylotwhale
 def __init__(self, annFi):
     self.file_path = annFi
     self.T, self.L = annT.anns2TLndarrays(self.file_path)
     self.tf = self.T[-1, -1]
コード例 #6
0
def predictAnnotationSections(wavF,
                              annF,
                              clf,
                              featExtFun,
                              lt,
                              outFile=None,
                              sep='\t',
                              printProbs=False,
                              header='',
                              readSections=None,
                              printreadSectionsC=True):
    """predicts annotations for call types sections
    Parameters
    ----------
    wavF: str
    annF: str
    clf: estimator
    featExtFun: callable
    lt: labelTransformer
    outFil: str
    sep: str
    printProbs: bool
    header: str
    readSections: list of str
        regions in the annF for which we predict
    printreadSectionsC: bool
    See also
    --------
       TLpredictAnnotationSections
       TODO: recode to use TLpredictAnnotationSections
    """

    if outFile is None:
        outFile = os.path.splitext(annF)[0] + '-sectionPredictions.txt'

    try:  # remove file if exists
        os.remove(outFile)
    except OSError:
        pass

    ## load files
    waveform, fs = sT.wav2waveform(wavF)
    T, L = annT.anns2TLndarrays(annF)
    if readSections == None:
        readSections = list(set(L))
    ## for each annotation section
    for i, label in enumerate(L):
        if label in readSections:
            waveformSec = auf.getWavSec(waveform, fs, *T[i])
            ## predict
            try:
                M0 = featExtFun(waveformSec)  # estract features
                M = np.expand_dims(M0.flatten(), axis=0)
                y_pred = lt.num2nom(clf.predict(M))  # predict label
            except AssertionError:
                y_pred = [label]
            ## write
            with open(outFile, 'a') as f:
                f.write("{}\t{}\t{}\t{}\n".format(T[i, 0], T[i, 1], label,
                                                  *y_pred))
        elif printreadSectionsC:
            with open(outFile, 'a') as f:
                f.write("{}\t{}\t{}\t{}\n".format(T[i, 0], T[i, 1], label,
                                                  label))

    return outFile