コード例 #1
0
 def isCounterExample(self, r_h, r_m):
     """Return True if the two rewards r_h and r_m are different and add the counter example at the OT."""
     if r_m != r_h:
         print("CE", r_m, r_h, self.observation_seq)
         input_word = Word(
             [Letter(symbol) for symbol in self.observation_seq])
         output_word = Word(
             [Letter(symbol) for symbol in self.reward_trace])
         self.OT.add_counterexample(input_word, output_word)
         return True
     return False
コード例 #2
0
    def deserialize(dict_data, possible_letters):
        if dict_data is None:
            raise Exception("dict_data cannot be None")
        input_letter = Letter.deserialize(dict_data['input_letter'],
                                          possible_letters)
        output_letter = Letter.deserialize(dict_data['output_letter'],
                                           possible_letters)
        node = KnowledgeNode(input_letter, output_letter)
        for child in dict_data["children"]:
            child_node = KnowledgeNode.deserialize(child, possible_letters)
            node.children[child_node.input_letter] = child_node

        return node
コード例 #3
0
    def __init__(self, path, reset_cost, default_reward, value_expert):
        self.world = Model(path, reset_cost, default_reward)
        self.value_expert = value_expert

        in_letters = [Letter(symbol) for symbol in self.world.mrm.observations]
        self.kbase = MRMActiveKnowledgeBase(self.world)
        self.OT = ObservationTable(input_letters=in_letters,
                                   knowledge_base=self.kbase)

        print('Initializing OT')
        self.OT.initialize()
        print('OT initialized')

        #COUNTERS
        self.total_learning_time = 0
        self.total_exploring_time = 0
        self.rewards = 0
        self.iteration4Explor = 0
        self.iteration4OT = 0
        self.nuof_counter_examples = 0

        #EXECUTION
        self.learn()
        while not self.check():
            self.learn()

        #END PRINT
        self.endPrints()
        remove(TMP_MODEL_PATH)
コード例 #4
0
ファイル: GenericMAT.py プロジェクト: tempuser1909/netzob
    def submit_word(self, word):
        """This method return the Word produced by the target while submited the specified word"""
        output_letters = []

        for letter in word.letters:
            symbols = letter.symbols
            try:
                output_symbols = []
                for symbol in symbols:
                    try:
                        self.abstraction_layer.writeSymbol(symbol)
                    except ChannelDownException as e:
                        self._logger.debug("Channel is Down")
                    (curr_output_symbols,
                     data) = self.abstraction_layer.readSymbols()
                    output_symbols.extend(curr_output_symbols)
                output_letters.append(Letter(symbols=output_symbols))
            except Exception as e:
                self._logger.fatal("An error occurred : {}".format(e))
                output_letters.append(Letter(symbols=[EmptySymbol()]))

        for i in range(len(word.letters)):
            input_letter = word.letters[i]
            output_letter = output_letters[i]
            input_str = "None"
            output_str = "None"

            if input_letter.symbols is not None:
                input_str = ','.join([s.name for s in input_letter.symbols])

            if output_letter.symbols is not None:
                output_str = ','.join([s.name for s in output_letter.symbols])

            self._logger.debug(">>> {}".format(input_str))
            self._logger.debug("<<< {}".format(output_str))

        self.write_cache()

        if self.submitted_word_cb is not None:
            try:
                self.submitted_word_cb(word.letters, output_letters)
            except Exception as e:
                self._logger.error(
                    "Error encountered while executed submitted_word_cb: {}".
                    format(e))

        return Word(output_letters, normalize=False)
コード例 #5
0
    def _submit_letter(self, s, letter):
        output_letter = EmptyLetter()
        try:
            to_send = ''.join([symbol for symbol in letter.symbols])
            output_letter = Letter(self._send_and_receive(s, to_send))
        except Exception as e:
            self._logger.error(e)

        return output_letter
コード例 #6
0
    def _execute_word(self, word):
        # Executes the specified word.
        if word is None:
            raise Exception("Word cannot be None")
        self._logger.debug("Execute word '{}'".format(word))
        #print("Execute word '{}'".format(word))

        reward_trace = []
        self.nuof_MQs += 1

        self.world.mrm.reset()
        self.world.map.reset()

        ge = GetExperience(self.world, word, MODE)  #Create the scheduler

        i = 0
        while i < len(word):
            letter = word.letters[i]
            a = ge.getActionScheduler(self.world.map.current,
                                      i)  #ask for the next action to execute
            (obs, rew) = self.world.moveAPF(a)  #get observation and reward
            reset = False
            while Letter(obs) != letter:
                if obs == "null":  #if we observe nothing execute a new action
                    self.actionsForLearning += 1
                    a = ge.getActionScheduler(self.world.map.current, i)
                    (obs, rew) = self.world.moveAPF(a)
                else:  #if we observe something we don't want, reset
                    reset = True
                    break

            if reset:
                self.world.reset()
                i = 0
                reward_trace = []
            else:  #if we observe what we want
                i += 1
                reward_trace.append(rew)
        w = Word([Letter(r) for r in reward_trace])
        return w
コード例 #7
0
    def run(self):
        self._logger.info("Configuring the inference process")

        # creates letters for each input symbols
        input_letters = [Letter(s) for s in self.input_symbols]

        try:
            # creates an abstraction layer on top of the channel to abstract and specialize received and sent messages
            abstraction_layer = AbstractionLayer(channel=self.channel,
                                                 symbols=self.input_symbols +
                                                 self.output_symbols)
            # creates a minimal adequat teacher
            mat = GenericMAT(abstraction_layer=abstraction_layer,
                             process_wrapper=self.process_wrapper,
                             cache_file_path=os.path.join(
                                 self.tmp_path, "cache.dump"))

            # configures the RandomWalkMethod that will be used as an equivalence query
            eqtests = RandomWalkMethod(knowledge_base=mat,
                                       input_letters=input_letters,
                                       max_steps=50000,
                                       restart_probability=0.7)

            # and finally, the LSTAR algorithm
            self.lstar = LSTAR(input_vocabulary=self.input_symbols,
                               knowledge_base=mat,
                               max_states=30,
                               eqtests=eqtests)

            # starts the inference process and stores the infered grammar in a dot file (graphviz)
            self._logger.info("Starting the inference process...")
            start_ts = time.time()
            self.infered_automata = self.lstar.learn()
            duration = time.time() - start_ts
            self._logger.info(
                "Inference process finished ({}s)".format(duration))

        finally:
            try:
                self.process_wrapper.stop(force=True)
            except Exception as e:
                self._logger.info(
                    "Encountered the following error while stoping the process wrapper: {}"
                    .format(e))
コード例 #8
0
ファイル: LSTAR.py プロジェクト: Rapfff/LearningMRM_AUTOMATON
    def __init__(self, input_vocabulary, knowledge_base, max_states, tmp_dir=None, eqtests=None):
        """Implementation of the LSTAR algorithm.

        Per default, WPMethod is used for equivalence tests. However, one can prefer a RandomWalkMethod
        by specifying the following 'eqtests' parameter:
        
        eqtests = RandomWalkMethod(self.knowledge_base, self.input_letters, 10000, 0.7)

        """


    
        self.input_letters = [Letter(symbol) for symbol in input_vocabulary]
        self.knowledge_base = knowledge_base
        self.tmp_dir = tmp_dir
        self.observation_table = ObservationTable(self.input_letters, self.knowledge_base)
        self.max_states = max_states
        self.eqtests = eqtests
        self.__f_stop = False
コード例 #9
0
    def createNewMdp(self, state_id, current_obs):
        """Function which build the temporary MDP"""
        to_add = []
        state = self.inverseMappingState(state_id)

        for action in self.model.map.availableActions(state):
            action_id = self.mappingAction(action)
            seen_obs = self.model.map.labelling[state_id][action_id]

            for (next_state,
                 proba) in self.model.map.transitions[state_id][action_id]:

                if seen_obs == "null":  #we observe nothing
                    new_state = (next_state, current_obs)
                    if self.addNewTransition(new_state,
                                             (state_id, current_obs),
                                             action_id, proba):
                        to_add.append(new_state)

                elif Letter(seen_obs) == self.observations.letters[
                        current_obs]:  #we observe what we want
                    current_obs += 1
                    new_state = (next_state, current_obs)
                    if self.addNewTransition(new_state,
                                             (state_id, current_obs - 1),
                                             action_id, proba):
                        if len(self.observations
                               ) == current_obs:  #we have done
                            self.target.append(self.states.index(new_state))
                        else:  #continue in every direction
                            to_add.append(new_state)

                    current_obs -= 1

                else:  #we observe something we don't want
                    self.transitions[self.states.index(
                        (state_id, current_obs))][action_id][0] = 1.0
                    self.reset_transitions[self.states.index(
                        (state_id, current_obs))].append(action_id)

        return to_add
コード例 #10
0
 def findOptimalPlanToAnswer(self, observations, s):
     plan = []
     for obs in observations.letters:
         maxEP = -1000000000
         bestAct = None
         bestState = dict()
         for a in tmw.A:
             maxProb = -1
             expectedProb = 0
             for ss in tmw.S:
                 if Letter(tmw.labelingFunc(ss)) == obs:
                     transProb = tmw.T(s, a, ss)
                     expectedProb += transProb
                     if transProb > maxProb:
                         maxProb = transProb
                         bestState[a] = ss
             if expectedProb > maxEP:
                 maxEP = expectedProb
                 bestAct = a
         plan.append(bestAct)
         s = bestState[bestAct]
     #return [Letter(symbol) for symbol in plan]
     return plan
コード例 #11
0
    def __parse_graph_entry(graph_entry, states):
        if graph_entry is None:
            raise Exception("Graph entry cannot be None")
        graph_entry = str(graph_entry).strip()
        if len(graph_entry) == 0:
            raise Exception("Graph entry cannot be None")

        # parse first object
        i_start_first_obj = graph_entry.find('"')
        if i_start_first_obj == -1:
            raise Exception("Cannot find first object definition")

        i_end_first_obj = graph_entry.find('"', i_start_first_obj + 1)
        if i_end_first_obj == -1:
            raise Exception("Cannot find first object definition")

        first_obj_name = graph_entry[i_start_first_obj +
                                     1:i_end_first_obj].strip()
        if len(first_obj_name) == 0:
            raise Exception("Cannot parse the name of the first object")

        first_state = None
        for state in states:
            if state.name == first_obj_name:
                first_state = state

        if first_state is None:
            first_state = State(name=first_obj_name)
            states.append(first_state)

        remainder = graph_entry[i_end_first_obj + 1:].strip()

        if remainder.startswith("->"):

            remainder = remainder[2:].strip()

            # parses the second state of the transition
            i_start_second_obj = remainder.find('"')
            if i_start_second_obj == -1:
                raise Exception("Cannot find second object definition")

            i_end_second_obj = remainder.find('"', i_start_second_obj + 1)
            if i_end_second_obj == -1:
                raise Exception("Cannot find second object definition")

            second_obj_name = remainder[i_start_second_obj +
                                        1:i_end_second_obj].strip()
            if len(second_obj_name) == 0:
                raise Exception(
                    "Cannot find the name of the destination state")

            second_state = None
            for state in states:
                if state.name == second_obj_name:
                    second_state = state

            if second_state is None:
                second_state = State(name=second_obj_name)
                states.append(second_state)

            # parses the transition input and output letters
            remainder = remainder[i_end_second_obj + 2:]
            i_start_transition_details = remainder.find('[')
            if i_start_transition_details == -1:
                raise Exception("Cannot find transition details")

            transition_details = remainder[i_start_transition_details:]

            # parses the transition label
            i_start_label = transition_details.find('label=')
            if i_start_label == -1:
                raise Exception("Cannot find label of the transition")
            i_end_label = transition_details[i_start_label +
                                             len('label="'):].find('"')
            label = transition_details[i_start_label +
                                       len('label="'):i_start_label +
                                       len('label="') + i_end_label].strip()

            if len(label) == 0:
                raise Exception("Cannot find label")

            # parses input and output letters out of the label
            (input, output) = label.split('/')

            input_letter = Letter(input.strip())
            output_letter = Letter(output.strip())

            # parses the transition name (url)
            i_start_url = transition_details.find('URL=')
            if i_start_url != -1:
                i_end_url = transition_details[i_start_url +
                                               len('URL="'):].find('"')
                url = transition_details[i_start_url +
                                         len('url="'):i_start_url +
                                         len('url="') + i_end_url].strip()
                t_name = url
            else:
                t_name = str(uuid.uuid4())

            transition = Transition(t_name, second_state, input_letter,
                                    output_letter)
            first_state.transitions.append(transition)
コード例 #12
0
    def buildProductAutomaton(self, h):
        """Given a hypothesis of the angluin algo, build the product between the gird and this hypothesis and write it in a PRISM file.
		The init state is {'c1','r1','null'} with no obs already made"""

        rewards = "rewards\n"
        labels = ''
        out_file = open(TMP_MODEL_PATH, 'w')
        #module
        out_file.write("mdp\n\nmodule tmp\n\n")

        #number of state and initial state
        new_states = []
        for s in self.world.map.states:
            for o in range(len(h.get_states())):
                labels += 'label "' + s + '_' + str(o) + '" = s=' + str(
                    len(new_states)) + ' ;\n'
                new_states.append((s, o))

        out_file.write("\ts : [0.." + str(len(new_states) - 1) + "] init " +
                       str(new_states.index((self.world.map.initiales[0],
                                             0))) + ";\n\n")

        #transitions
        for s in new_states:
            state_id = self.world.map.getIdState(s[0])
            for a in self.world.map.availableActions(s[0]):
                action_id = self.world.map.getIdAction(a)
                obs = self.world.map.labelling[state_id][action_id]

                #if len(self.world.map.transitions[state_id][action_id]) > 0:
                out_file.write("\t[" + a + "] s=" + str(new_states.index(s)) +
                               "-> ")
                temp_list = []

                if obs == 'null':
                    rewards += "\t[" + a + "] (s=" + str(
                        new_states.index(s)) + ") : " + str(
                            self.world.mrm.default_reward) + ";\n"
                    for [dest, prob
                         ] in self.world.map.transitions[state_id][action_id]:
                        index_dest = str(
                            new_states.index(
                                (self.world.map.getStateFromId(dest), s[1])))
                        temp_list.append(
                            str(prob) + " : (s'=" + index_dest + ")")
                else:
                    tr_val = h.play_word(
                        Word([Letter(obs)]),
                        self.getStateInHypothesis(h.get_states(), s[1]))
                    state_in_h = int(tr_val[1][-1].name)
                    rewards += "\t[" + a + "] (s=" + str(
                        new_states.index(s)) + ") : " + str(
                            tr_val[0].last_letter().name) + ";\n"
                    for [dest, prob
                         ] in self.world.map.transitions[state_id][action_id]:
                        index_dest = str(
                            new_states.index(
                                (self.world.map.getStateFromId(dest),
                                 state_in_h)))
                        temp_list.append(
                            str(prob) + " : (s'=" + index_dest + ")")

                out_file.write(" + ".join(temp_list))
                out_file.write(";\n")

            a = "reset"
            out_file.write(
                "\t[" + a + "] s=" + str(new_states.index(s)) +
                "-> 1.0 : (s'=" +
                str(new_states.index((self.world.map.initiales[0], 0))) +
                ");\n")
            rewards += "\t[" + a + "] (s=" + str(
                new_states.index(s)) + ") : " + str(
                    self.world.mrm.reset_cost) + ";\n"

        out_file.write("\nendmodule\n\n")
        out_file.write(labels)

        rewards += "endrewards\n"
        out_file.write(rewards)
        out_file.close()