コード例 #1
0
    def inference(self, x):
        """
        x: 2d numpy array
        """
        num = x.shape[0]
        latentVars = self._model.getInternalVariables()
        datacase = ContinuousDatacase.create(self.varNames)
        datacase.synchronize(self._model)
        ctp = NaturalCliqueTreePropagation(self._model)
        
        out = [None]*len(latentVars)
        datacase.putValues(x)
        evidence = datacase.getEvidence()
        ctp.use(evidence)
        ctp.propagate()
        for j in range(len(latentVars)):
          latent = np.exp(ctp.getMarginal(latentVars[j]).logprob)
          out[j] = latent

        return out
コード例 #2
0
ファイル: test_em.py プロジェクト: zhushaoquan/ltvae-release
    datacase = ContinuousDatacase.create(varNames)
    datacase.synchronize(net)
    ctp = NaturalCliqueTreePropagation(net)

    targetVar = None
    for v in net._variables.keys():
        if v.name == "z":
            targetVar = v
            break
    print(targetVar)
    y_pred = []

    datacase.putValues(X)
    evidence = datacase.getEvidence()

    ctp.use(evidence)
    ctp.propagate()
    latent = np.exp(ctp.getMarginal(targetVar).logprob)
    y_pred = np.argmax(latent, axis=1)

    print(y_pred)
    colors = np.array(
        list(
            islice(
                cycle([
                    '#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628',
                    '#984ea3', '#999999', '#e41a1c', '#dede00'
                ]), int(max(y_pred) + 1))))
    plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])
    plt.show()
コード例 #3
0
ファイル: test_em.py プロジェクト: eelxpeng/pyLTM
    # set up evidence
    datacase = ContinuousDatacase.create(varNames)
    datacase.synchronize(net)
    ctp = NaturalCliqueTreePropagation(net)

    targetVar = None
    for v in net._variables.keys():
        if v.name == "z":
            targetVar = v
            break
    print(targetVar)
    y_pred = []
    for i in range(len(X)):
        datacase.putValues(X[i])
        evidence = datacase.getEvidence()

        ctp.use(evidence)
        ctp.propagate()
        latent = ctp.getMarginal(targetVar).parameter.prob
        y_pred.append(np.argmax(latent))
    print(y_pred)
    colors = np.array(
        list(
            islice(
                cycle([
                    '#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628',
                    '#984ea3', '#999999', '#e41a1c', '#dede00'
                ]), int(max(y_pred) + 1))))
    plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])
    plt.show()