コード例 #1
0
ファイル: old.py プロジェクト: malei-pku/navis
 def test_connectors_between(self):
     self.assertIsInstance(pymaid.get_connectors_between(config_test.test_skids,
                                                         config_test.test_skids),
                           pd.DataFrame)
コード例 #2
0
ファイル: Plot_nx.py プロジェクト: markuspleijzier/AdultEM
Neuron_2 = pymaid.get_neuron(Neuron_2_skeleton_id_number) 

#This function downsamples the neuron - it removes large stretches of skeleton that do not have any branch points.
#When the argument preserve_cn_treenodes = True, this preserves the treenodes where connectors (pre/postsynapses)
#have been placed. Downsampling is used to reduce the computational time, as some 3D reconstructed neurons can become 
#very large. 
Neuron.downsample(1000000, preserve_cn_treenodes = True) 
Neuron_2.downsample(1000000, preserve_cn_treenodes = True)


#Get the connectors between the two neurons of interest
#When True, the directional argument will return the connectors (pre and post synapses)
#from neuron A to neuron B (A-->B; in this case Neuron_1 to Neuron_2). When False, it will return all
#connectors between neuron A to neuron B (A<-->B; in this case, all connectors between Neuron_1 to Neuron_2)

Neuron_1_to_Neuron_2 = pymaid.get_connectors_between(Neuron_1,Neuron_2, directional = True)



def plot_nx(x, plot_connectors=True, highlight_connectors=None, prog='dot'):
    """ This lets you plot neurons as dendrograms using networkx and its bindings
    to graphviz.
    Parameters
    ----------
    x :     				CatmaidNeuron
            				Neuron to plot. Strongly recommend to downsample the neuron!
    plot_connectors :       bool, optional
                            If True, connectors will be plotted
    highlight_connectors :  list of int
                            These connectors (or more precisely, the treenodes they
                            connect to) will be highlighted in green