コード例 #1
0
def FullChemicalPotentialWindow(target_phase, key_element):
    chemsys = key_element + '-' + Composition(target_phase).chemical_system
    with MPRester(api_key='') as mpr:
        entries = mpr.get_entries_in_chemsys(chemsys)

    pd_closed = PhaseDiagram(entries)
    transition_chempots = pd_closed.get_transition_chempots(
        Element(key_element))
    # The exact mu value used to construct the plot for each range is
    # the average of the endpoints of the range, with the exception of the last range,
    # which is plotted at the value of the last endpoint minus 0.1.
    # https://matsci.org/t/question-on-phase-diagram-app-chemical-potential/511
    average_chempots = []
    if len(transition_chempots) > 1:
        for i in range(len(transition_chempots) - 1):
            ave = (transition_chempots[i] + transition_chempots[i + 1]) / 2
            average_chempots.append(ave)
        average_chempots.append(transition_chempots[-1] - 0.1)
    elif len(transition_chempots) == 1:
        # prepare for binary systems, of which two endnodes tielined directly, like Li-Zr
        average_chempots.append(transition_chempots[0])
    average_chempots = np.round(average_chempots, 3)

    boolean_list = []
    for chempot in average_chempots:
        # GrandPotentialPhaseDiagram works good even for binary systems to find stable phases
        pd_open = GrandPotentialPhaseDiagram(entries,
                                             {Element(key_element): chempot})
        stable_phases = [entry.name for entry in pd_open.stable_entries]
        boolean_list.append(target_phase in stable_phases)
    return (False not in boolean_list)
コード例 #2
0
    def get_gppd_transition_chempots(self, open_el, gppd_entries=None):
        """
        This is to get all possible transition chemical potentials from PD (rather than GPPD)
        Still use pure element ref.
        # May consider supporting negative miu in the future
        """
        if not gppd_entries:
            gppd_entries = self.get_gppd_entries(open_el)
        pd = PhaseDiagram(gppd_entries)
        vaspref_mius = pd.get_transition_chempots(Element(open_el))
        el_ref = VirtualEntry.get_mp_entry(open_el)

        elref_mius = [miu - el_ref.energy_per_atom for miu in vaspref_mius]
        return elref_mius
コード例 #3
0
    def get_phase_diagram_data(self):
        """
        Returns grand potential phase diagram data to external plot
        Assumes openelement specific element equals None
        :return: Data to external plot
        """
        open_elements_specific = None
        open_element_all = Element(self.open_element)
        mpr = MPRester("settings")

        # Get data to make phase diagram
        entries = mpr.get_entries_in_chemsys(self.system, compatible_only=True)
        #print(entries)

        if open_elements_specific:
            gcpd = GrandPotentialPhaseDiagram(entries, open_elements_specific)
            self.plot_phase_diagram(gcpd, False)
            self.analyze_phase_diagram(gcpd)

        if open_element_all:
            pd = PhaseDiagram(entries)
            chempots = pd.get_transition_chempots(open_element_all)
            #print(chempots)
            #all_gcpds = list()
            toplot = []
            # dic = {}
            for idx in range(len(chempots)):
                if idx == len(chempots) - 1:
                    avgchempot = chempots[idx] - 0.1
                else:
                    avgchempot = 0.5 * (chempots[idx] + chempots[idx + 1])
                gcpd = GrandPotentialPhaseDiagram(
                    entries, {open_element_all: avgchempot}, pd.elements)
                # toplot.append(self.get_grand_potential_phase_diagram(gcpd))

                min_chempot = None if idx == len(chempots) - 1 else chempots[
                    idx + 1]
                max_chempot = chempots[idx]
                #gcpd = GrandPotentialPhaseDiagram(entries, {open_element_all: max_chempot}, pd.elements)

                toplot.append(self.get_grand_potential_phase_diagram(gcpd))
                #toplot.append(max_chempot)

                #self.plot_phase_diagram(gcpd, False)
                #print({open_element_all: max_chempot})

            # Data to plot phase diagram
            return toplot
コード例 #4
0
class PhaseDiagramTest(unittest.TestCase):
    def setUp(self):
        self.entries = EntrySet.from_csv(str(module_dir /
                                             "pdentries_test.csv"))
        self.pd = PhaseDiagram(self.entries)
        warnings.simplefilter("ignore")

    def tearDown(self):
        warnings.simplefilter("default")

    def test_init(self):
        # Ensure that a bad set of entries raises a PD error. Remove all Li
        # from self.entries.
        entries = filter(
            lambda e: (not e.composition.is_element) or e.composition.elements[
                0] != Element("Li"),
            self.entries,
        )
        self.assertRaises(PhaseDiagramError, PhaseDiagram, entries)

    def test_dim1(self):
        # Ensure that dim 1 PDs can eb generated.
        for el in ["Li", "Fe", "O2"]:
            entries = [
                e for e in self.entries if e.composition.reduced_formula == el
            ]
            pd = PhaseDiagram(entries)
            self.assertEqual(len(pd.stable_entries), 1)

            for e in entries:
                decomp, ehull = pd.get_decomp_and_e_above_hull(e)
                self.assertGreaterEqual(ehull, 0)
            plotter = PDPlotter(pd)
            lines, stable_entries, unstable_entries = plotter.pd_plot_data
            self.assertEqual(lines[0][1], [0, 0])

    def test_ordering(self):
        # Test sorting of elements
        entries = [
            ComputedEntry(Composition(formula), 0)
            for formula in ["O", "N", "Fe"]
        ]
        pd = PhaseDiagram(entries)
        sorted_elements = (Element("Fe"), Element("N"), Element("O"))
        self.assertEqual(tuple(pd.elements), sorted_elements)

        entries.reverse()
        pd = PhaseDiagram(entries)
        self.assertEqual(tuple(pd.elements), sorted_elements)

        # Test manual specification of order
        ordering = [Element(elt_string) for elt_string in ["O", "N", "Fe"]]
        pd = PhaseDiagram(entries, elements=ordering)
        self.assertEqual(tuple(pd.elements), tuple(ordering))

    def test_stable_entries(self):
        stable_formulas = [
            ent.composition.reduced_formula for ent in self.pd.stable_entries
        ]
        expected_stable = [
            "Fe2O3",
            "Li5FeO4",
            "LiFeO2",
            "Fe3O4",
            "Li",
            "Fe",
            "Li2O",
            "O2",
            "FeO",
        ]
        for formula in expected_stable:
            self.assertTrue(formula in stable_formulas,
                            formula + " not in stable entries!")

    def test_get_formation_energy(self):
        stable_formation_energies = {
            ent.composition.reduced_formula: self.pd.get_form_energy(ent)
            for ent in self.pd.stable_entries
        }
        expected_formation_energies = {
            "Li5FeO4": -164.8117344866667,
            "Li2O2": -14.119232793333332,
            "Fe2O3": -16.574164339999996,
            "FeO": -5.7141519966666685,
            "Li": 0.0,
            "LiFeO2": -7.732752316666666,
            "Li2O": -6.229303868333332,
            "Fe": 0.0,
            "Fe3O4": -22.565714456666683,
            "Li2FeO3": -45.67166036000002,
            "O2": 0.0,
        }
        for formula, energy in expected_formation_energies.items():
            self.assertAlmostEqual(energy, stable_formation_energies[formula],
                                   7)

    def test_all_entries_hulldata(self):
        self.assertEqual(len(self.pd.all_entries_hulldata), 492)

    def test_planar_inputs(self):
        e1 = PDEntry("H", 0)
        e2 = PDEntry("He", 0)
        e3 = PDEntry("Li", 0)
        e4 = PDEntry("Be", 0)
        e5 = PDEntry("B", 0)
        e6 = PDEntry("Rb", 0)

        pd = PhaseDiagram([e1, e2, e3, e4, e5, e6],
                          map(Element, ["Rb", "He", "B", "Be", "Li", "H"]))

        self.assertEqual(len(pd.facets), 1)

    def test_str(self):
        self.assertIsNotNone(str(self.pd))

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(
                self.pd.get_e_above_hull(entry),
                1e-11,
                "Stable entries should have e above hull of zero!",
            )

        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.pd.get_e_above_hull(entry)
                self.assertTrue(isinstance(e_ah, Number))
                self.assertGreaterEqual(e_ah, 0)

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.pd.get_equilibrium_reaction_energy(entry),
                0,
                "Stable entries should have negative equilibrium reaction energy!",
            )

    def test_get_quasi_e_to_hull(self):
        for entry in self.pd.unstable_entries:
            # catch duplicated stable entries
            if entry.normalize(
                    inplace=False) in self.pd.get_stable_entries_normed():
                self.assertLessEqual(
                    self.pd.get_quasi_e_to_hull(entry),
                    0,
                    "Duplicated stable entries should have negative decomposition energy!",
                )
            else:
                self.assertGreaterEqual(
                    self.pd.get_quasi_e_to_hull(entry),
                    0,
                    "Unstable entries should have positive decomposition energy!",
                )

        for entry in self.pd.stable_entries:
            if entry.composition.is_element:
                self.assertEqual(
                    self.pd.get_quasi_e_to_hull(entry),
                    0,
                    "Stable elemental entries should have decomposition energy of zero!",
                )
            else:
                self.assertLessEqual(
                    self.pd.get_quasi_e_to_hull(entry),
                    0,
                    "Stable entries should have negative decomposition energy!",
                )

        novel_stable_entry = PDEntry("Li5FeO4", -999)
        self.assertLess(
            self.pd.get_quasi_e_to_hull(novel_stable_entry),
            0,
            "Novel stable entries should have negative decomposition energy!",
        )

        novel_unstable_entry = PDEntry("Li5FeO4", 999)
        self.assertGreater(
            self.pd.get_quasi_e_to_hull(novel_unstable_entry),
            0,
            "Novel unstable entries should have positive decomposition energy!",
        )

        duplicate_entry = PDEntry("Li2O", -14.31361175)
        scaled_dup_entry = PDEntry("Li4O2", -14.31361175 * 2)
        stable_entry = [e for e in self.pd.stable_entries
                        if e.name == "Li2O"][0]

        self.assertEqual(
            self.pd.get_quasi_e_to_hull(duplicate_entry),
            self.pd.get_quasi_e_to_hull(stable_entry),
            "Novel duplicates of stable entries should have same decomposition energy!",
        )

        self.assertEqual(
            self.pd.get_quasi_e_to_hull(scaled_dup_entry),
            self.pd.get_quasi_e_to_hull(stable_entry),
            "Novel scaled duplicates of stable entries should have same decomposition energy!",
        )

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEqual(
                len(self.pd.get_decomposition(entry.composition)),
                1,
                "Stable composition should have only 1 decomposition!",
            )
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.pd.get_decomposition(entry.composition))
            self.assertTrue(
                ndecomp > 0 and ndecomp <= dim,
                "The number of decomposition phases can at most be equal to the number of components.",
            )

        # Just to test decomp for a ficitious composition
        ansdict = {
            entry.composition.formula: amt
            for entry, amt in self.pd.get_decomposition(
                Composition("Li3Fe7O11")).items()
        }
        expected_ans = {
            "Fe2 O2": 0.0952380952380949,
            "Li1 Fe1 O2": 0.5714285714285714,
            "Fe6 O8": 0.33333333333333393,
        }
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(len(self.pd.get_transition_chempots(el)),
                                 len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(
                        len(self.pd.get_element_profile(el,
                                                        entry.composition)),
                        len(self.pd.facets),
                    )

        expected = [
            {
                "evolution": 1.0,
                "chempot": -4.2582781416666666,
                "reaction": "Li2O + 0.5 O2 -> Li2O2",
            },
            {
                "evolution": 0,
                "chempot": -5.0885906699999968,
                "reaction": "Li2O -> Li2O",
            },
            {
                "evolution": -1.0,
                "chempot": -10.487582010000001,
                "reaction": "Li2O -> 2 Li + 0.5 O2",
            },
        ]
        result = self.pd.get_element_profile(Element("O"), Composition("Li2O"))
        for d1, d2 in zip(expected, result):
            self.assertAlmostEqual(d1["evolution"], d2["evolution"])
            self.assertAlmostEqual(d1["chempot"], d2["chempot"])
            self.assertEqual(d1["reaction"], str(d2["reaction"]))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.pd.get_chempot_range_map(elements)), 10)

    def test_getmu_vertices_stability_phase(self):
        results = self.pd.getmu_vertices_stability_phase(
            Composition("LiFeO2"), Element("O"))
        self.assertAlmostEqual(len(results), 6)
        test_equality = False
        for c in results:
            if (abs(c[Element("O")] + 7.115) < 1e-2
                    and abs(c[Element("Fe")] + 6.596) < 1e-2
                    and abs(c[Element("Li")] + 3.931) < 1e-2):
                test_equality = True
        self.assertTrue(test_equality,
                        "there is an expected vertex missing in the list")

    def test_getmu_range_stability_phase(self):
        results = self.pd.get_chempot_range_stability_phase(
            Composition("LiFeO2"), Element("O"))
        self.assertAlmostEqual(results[Element("O")][1], -4.4501812249999997)
        self.assertAlmostEqual(results[Element("Fe")][0], -6.5961470999999996)
        self.assertAlmostEqual(results[Element("Li")][0], -3.6250022625000007)

    def test_get_hull_energy(self):
        for entry in self.pd.stable_entries:
            h_e = self.pd.get_hull_energy(entry.composition)
            self.assertAlmostEqual(h_e, entry.energy)
            n_h_e = self.pd.get_hull_energy(
                entry.composition.fractional_composition)
            self.assertAlmostEqual(n_h_e, entry.energy_per_atom)

    def test_1d_pd(self):
        entry = PDEntry("H", 0)
        pd = PhaseDiagram([entry])
        decomp, e = pd.get_decomp_and_e_above_hull(PDEntry("H", 1))
        self.assertAlmostEqual(e, 1)
        self.assertAlmostEqual(decomp[entry], 1.0)

    def test_get_critical_compositions_fractional(self):
        c1 = Composition("Fe2O3").fractional_composition
        c2 = Composition("Li3FeO4").fractional_composition
        c3 = Composition("Li2O").fractional_composition

        comps = self.pd.get_critical_compositions(c1, c2)
        expected = [
            Composition("Fe2O3").fractional_composition,
            Composition("Li0.3243244Fe0.1621621O0.51351349"),
            Composition("Li3FeO4").fractional_composition,
        ]
        for crit, exp in zip(comps, expected):
            self.assertTrue(crit.almost_equals(exp, rtol=0, atol=1e-5))

        comps = self.pd.get_critical_compositions(c1, c3)
        expected = [
            Composition("Fe0.4O0.6"),
            Composition("LiFeO2").fractional_composition,
            Composition("Li5FeO4").fractional_composition,
            Composition("Li2O").fractional_composition,
        ]
        for crit, exp in zip(comps, expected):
            self.assertTrue(crit.almost_equals(exp, rtol=0, atol=1e-5))

    def test_get_critical_compositions(self):
        c1 = Composition("Fe2O3")
        c2 = Composition("Li3FeO4")
        c3 = Composition("Li2O")

        comps = self.pd.get_critical_compositions(c1, c2)
        expected = [
            Composition("Fe2O3"),
            Composition("Li0.3243244Fe0.1621621O0.51351349") * 7.4,
            Composition("Li3FeO4"),
        ]
        for crit, exp in zip(comps, expected):
            self.assertTrue(crit.almost_equals(exp, rtol=0, atol=1e-5))

        comps = self.pd.get_critical_compositions(c1, c3)
        expected = [
            Composition("Fe2O3"),
            Composition("LiFeO2"),
            Composition("Li5FeO4") / 3,
            Composition("Li2O"),
        ]
        for crit, exp in zip(comps, expected):
            self.assertTrue(crit.almost_equals(exp, rtol=0, atol=1e-5))

        # Don't fail silently if input compositions aren't in phase diagram
        # Can be very confusing if you're working with a GrandPotentialPD
        self.assertRaises(
            ValueError,
            self.pd.get_critical_compositions,
            Composition("Xe"),
            Composition("Mn"),
        )

        # For the moment, should also fail even if compositions are in the gppd
        # because it isn't handled properly
        gppd = GrandPotentialPhaseDiagram(self.pd.all_entries, {"Xe": 1},
                                          self.pd.elements + [Element("Xe")])
        self.assertRaises(
            ValueError,
            gppd.get_critical_compositions,
            Composition("Fe2O3"),
            Composition("Li3FeO4Xe"),
        )

        # check that the function still works though
        comps = gppd.get_critical_compositions(c1, c2)
        expected = [
            Composition("Fe2O3"),
            Composition("Li0.3243244Fe0.1621621O0.51351349") * 7.4,
            Composition("Li3FeO4"),
        ]
        for crit, exp in zip(comps, expected):
            self.assertTrue(crit.almost_equals(exp, rtol=0, atol=1e-5))

        # case where the endpoints are identical
        self.assertEqual(self.pd.get_critical_compositions(c1, c1 * 2),
                         [c1, c1 * 2])

    def test_get_composition_chempots(self):
        c1 = Composition("Fe3.1O4")
        c2 = Composition("Fe3.2O4.1Li0.01")

        e1 = self.pd.get_hull_energy(c1)
        e2 = self.pd.get_hull_energy(c2)

        cp = self.pd.get_composition_chempots(c1)
        calc_e2 = e1 + sum(cp[k] * v for k, v in (c2 - c1).items())
        self.assertAlmostEqual(e2, calc_e2)

    def test_get_all_chempots(self):
        c1 = Composition("Fe3.1O4")
        c2 = Composition("FeO")

        cp1 = self.pd.get_all_chempots(c1)
        cpresult = {
            Element("Li"): -4.077061954999998,
            Element("Fe"): -6.741593864999999,
            Element("O"): -6.969907375000003,
        }

        for elem, energy in cpresult.items():
            self.assertAlmostEqual(cp1["Fe3O4-FeO-LiFeO2"][elem], energy)

        cp2 = self.pd.get_all_chempots(c2)
        cpresult = {
            Element("O"): -7.115354140000001,
            Element("Fe"): -6.5961471,
            Element("Li"): -3.9316151899999987,
        }

        for elem, energy in cpresult.items():
            self.assertAlmostEqual(cp2["FeO-LiFeO2-Fe"][elem], energy)

    def test_to_from_dict(self):

        # test round-trip for other entry types such as ComputedEntry
        entry = ComputedEntry("H", 0.0, 0.0, entry_id="test")
        pd = PhaseDiagram([entry])
        d = pd.as_dict()
        pd_roundtrip = PhaseDiagram.from_dict(d)
        self.assertEqual(pd.all_entries[0].entry_id,
                         pd_roundtrip.all_entries[0].entry_id)
コード例 #5
0
pd = PhaseDiagramOpenAnalyzer(mp_entries[0], open_element_all)

entries.extend(mp_entries)

# Process entries using the MaterialsProjectCompatibility
compat = MaterialsProjectCompatibility()
entries = compat.process_entries(entries)
#explanation_output = open("explain.txt",'w')
entries_output = open("entries.txt", 'w')
compat.explain(entries[0])
#print(entries, file=entries_output)

# pd2 = PhaseDiagram(entries)

chempot_list = pd2.get_transition_chempots(open_element_all)
pd_index = 0

# cria um dicionário
chempot_range_of_each_phase = {}
for particular_phase_diagram in all_phase_diagrams:
    # recebe o potencial químico
    chempot = chempot_list[pd_index]
    if pd_index is not number_of_phase_diagrams - 1:
        next_chempot = chempot_list[pd_index + 1]
    else:
        next_chempot = chempot_list[pd_index] - 2.0
    chempot_range = [chempot, next_chempot]
    # recebe as fases
    phases_list = particular_phase_diagram[0]
コード例 #6
0
    def get_phase_diagram_data(self):
        """
        Returns grand potential phase diagram data to external plot
        Assumes openelement specific element equals None
        :return: Data to external plot
        """
        open_elements_specific = None
        open_element_all = Element(self.open_element)
        mpr = MPRester("key")

        # import do dados dos arquivos tipo vasp
        drone = VaspToComputedEntryDrone()
        queen = BorgQueen(drone, rootpath=".")
        entries = queen.get_data()

        # Get data to make phase diagram
        mp_entries = mpr.get_entries_in_chemsys(self.system,
                                                compatible_only=True)

        entries.extend(mp_entries)

        compat = MaterialsProjectCompatibility()
        entries = compat.process_entries(entries)
        #explanation_output = open("explain.txt",'w')
        entries_output = open("entries.txt", 'w')
        compat.explain(entries[0])
        print(entries, file=entries_output)
        #print(entries)

        if open_elements_specific:
            gcpd = GrandPotentialPhaseDiagram(entries, open_elements_specific)
            self.plot_phase_diagram(gcpd, False)
            self.analyze_phase_diagram(gcpd)

        if open_element_all:
            pd = PhaseDiagram(entries)
            chempots = pd.get_transition_chempots(open_element_all)
            #print(chempots)
            #all_gcpds = list()
            toplot = []
            # dic = {}
            for idx in range(len(chempots)):
                if idx == len(chempots) - 1:
                    avgchempot = chempots[idx] - 0.1
                else:
                    avgchempot = 0.5 * (chempots[idx] + chempots[idx + 1])
                gcpd = GrandPotentialPhaseDiagram(
                    entries, {open_element_all: avgchempot}, pd.elements)
                # toplot.append(self.get_grand_potential_phase_diagram(gcpd))

                min_chempot = None if idx == len(chempots) - 1 else chempots[
                    idx + 1]
                max_chempot = chempots[idx]
                #gcpd = GrandPotentialPhaseDiagram(entries, {open_element_all: max_chempot}, pd.elements)

                toplot.append(self.get_grand_potential_phase_diagram(gcpd))
                #toplot.append(max_chempot)

                #self.plot_phase_diagram(gcpd, False)
                #print({open_element_all: max_chempot})

            # Data to plot phase diagram
            return toplot
コード例 #7
0
    def get_phase_diagram_data(self):
        """
        Returns grand potential phase diagram data to external plot
        Assumes openelement specific element equals None
        :return: Data to external plot
        """
        open_elements_specific = None
        open_element_all = Element(self.open_element)
        mpr = MPRester(settings.apiKey)

        drone = VaspToComputedEntryDrone()
        queen = BorgQueen(drone, rootpath=".")
        entries = queen.get_data()

        # Get data to make phase diagram
        mp_entries = mpr.get_entries_in_chemsys(self.system,
                                                compatible_only=True)

        entries.extend(mp_entries)

        compat = MaterialsProjectCompatibility()
        entries = compat.process_entries(entries)
        #explanation_output = open("explain.txt",'w')
        #entries_output = open("entries.txt", 'w')
        compat.explain(entries[0])
        #print(entries, file=entries_output)

        if open_elements_specific:
            gcpd = GrandPotentialPhaseDiagram(entries, open_elements_specific)
            self.plot_phase_diagram(gcpd, False)
            self.analyze_phase_diagram(gcpd)

        if open_element_all:
            pd = PhaseDiagram(entries)
            chempots = pd.get_transition_chempots(open_element_all)
            # print(chempots)
            #all_gcpds = list()
            toplot = []
            # dic = {}
            for idx in range(len(chempots)):
                if idx == len(chempots) - 1:
                    avgchempot = chempots[idx] - 0.1
                else:
                    avgchempot = 0.5 * (chempots[idx] + chempots[idx + 1])
                gcpd = GrandPotentialPhaseDiagram(
                    entries, {open_element_all: avgchempot}, pd.elements)

                # min_chempot = None if idx == len(
                #     chempots) - 1 else chempots[idx + 1]
                # max_chempot = chempots[idx]
                #gcpd = GrandPotentialPhaseDiagram(entries, {open_element_all: max_chempot}, pd.elements)

                toplot.append(self.get_grand_potential_phase_diagram(gcpd))
                # toplot.append(max_chempot)

                #self.plot_phase_diagram(gcpd, False)
                #print({open_element_all: max_chempot})

        all_phase_diagrams = toplot
        # print(all_phase_diagrams)

        number_of_phase_diagrams = len(all_phase_diagrams)

        #pd3 = PhaseDiagram(entries)

        chempot_list = pd.get_transition_chempots(open_element_all)
        pd_index = 0

        chempots_range_of_each_phase = {}
        for particular_phase_diagram in all_phase_diagrams:
            chempot = chempot_list[pd_index]

            if pd_index is not number_of_phase_diagrams - 1:
                next_chempot = chempot_list[pd_index + 1]
            else:
                next_chempot = chempot_list[pd_index] - 2.0
            chempot_range = [chempot, next_chempot]

            phases_list = particular_phase_diagram[0]

            for phase in phases_list:
                if phase in chempots_range_of_each_phase.keys():
                    chempots_range_of_each_phase[phase][1] = next_chempot.copy(
                    )
                else:
                    chempots_range_of_each_phase[phase] = chempot_range.copy()

            pd_index = pd_index + 1

        return chempots_range_of_each_phase
コード例 #8
0
        "O"
    )  # plot a series of open phase diagrams at critical chem pots with this element open

    mpr = MPRester(MAPI_KEY)  # object for connecting to MP Rest interface

    # get data
    entries = mpr.get_entries_in_chemsys(system, compatible_only=True)

    if open_elements_specific:
        gcpd = GrandPotentialPhaseDiagram(entries, open_elements_specific)
        plot_pd(gcpd, False)
        analyze_pd(gcpd)

    if open_element_all:
        pd = PhaseDiagram(entries)
        chempots = pd.get_transition_chempots(open_element_all)
        all_gcpds = list()
        toplot = []
        arquivo = open("dados.txt", "w")
        for idx in range(len(chempots)):
            if idx == len(chempots) - 1:
                avgchempot = chempots[idx] - 0.1
            else:
                avgchempot = 0.5 * (chempots[idx] + chempots[idx + 1])
            gcpd = GrandPotentialPhaseDiagram(entries,
                                              {open_element_all: avgchempot},
                                              pd.elements)

            min_chempot = None if idx == len(chempots) - 1 else chempots[idx +
                                                                         1]
            max_chempot = chempots[idx]
コード例 #9
0
ファイル: RandomForest.py プロジェクト: liyihang1024/mpds
# Gather all elements involved in the chemical system.
elements = [e.symbol for e in comp1.elements + comp2.elements]
if grand:
    elements.append(open_el)
elements = list(set(elements))  # Remove duplicates

# Get all entries in the chemical system
entries = mpr.get_entries_in_chemsys(elements)

# Build a phase diagram using these entries.
pd = PhaseDiagram(entries)

# For an open system, include the grand potential phase diagram.
if grand:
    # Get the chemical potential of the pure subtance.
    mu = pd.get_transition_chempots(Element(open_el))[0]
    # Set the chemical potential in the elemental reservoir.
    chempots = {open_el: relative_mu + mu}
    # Build the grand potential phase diagram
    gpd = GrandPotentialPhaseDiagram(entries, chempots)
    # Create InterfacialReactivity object.
    interface = InterfacialReactivity(comp1,
                                      comp2,
                                      gpd,
                                      norm=True,
                                      include_no_mixing_energy=True,
                                      pd_non_grand=pd,
                                      use_hull_energy=False)
else:
    interface = InterfacialReactivity(comp1,
                                      comp2,