コード例 #1
0
    def __init__(self, lambda_table=None, alpha=-5):
        if lambda_table is not None:
            self._lambda_table = lambda_table
        else:
            module_dir = os.path.dirname(__file__)
            json_file = os.path.join(module_dir, 'data', 'lambda.json')
            with open(json_file) as f:
                self._lambda_table = json.load(f)

        # build map of specie pairs to lambdas
        self.alpha = alpha
        self._l = {}
        self.species = set()
        for row in self._lambda_table:
            if 'D1+' not in row:
                s1 = Specie.from_string(row[0])
                s2 = Specie.from_string(row[1])
                self.species.add(s1)
                self.species.add(s2)
                self._l[frozenset([s1, s2])] = float(row[2])

        # create Z and px
        self.Z = 0
        self._px = defaultdict(float)
        for s1, s2 in itertools.product(self.species, repeat=2):
            value = math.exp(self.get_lambda(s1, s2))
            self._px[s1] += value / 2
            self._px[s2] += value / 2
            self.Z += value
コード例 #2
0
    def __init__(self, lambda_table=None, alpha=-5):
        if lambda_table is not None:
            self._lambda_table = lambda_table
        else:
            module_dir = os.path.dirname(__file__)
            json_file = os.path.join(module_dir, 'data', 'lambda.json')
            with open(json_file) as f:
                self._lambda_table = json.load(f)

        #build map of specie pairs to lambdas
        self.alpha = alpha
        self._l = {}
        self.species = set()
        for row in self._lambda_table:
            if 'D1+' not in row:
                s1 = Specie.from_string(row[0])
                s2 = Specie.from_string(row[1])
                self.species.add(s1)
                self.species.add(s2)
                self._l[frozenset([s1, s2])] = float(row[2])

        #create Z and px
        self.Z = 0
        self._px = defaultdict(float)
        for s1, s2 in itertools.product(self.species, repeat=2):
            value = math.exp(self.get_lambda(s1, s2))
            self._px[s1] += value / 2
            self._px[s2] += value / 2
            self.Z += value
コード例 #3
0
 def test_to_from_string(self):
     fe3 = Specie("Fe", 3, {"spin": 5})
     self.assertEqual(str(fe3), "Fe3+spin=5")
     fe = Specie.from_string("Fe3+spin=5")
     self.assertEqual(fe.spin, 5)
     mo0 = Specie("Mo", 0, {"spin": 5})
     self.assertEqual(str(mo0), "Mo0+spin=5")
     mo = Specie.from_string("Mo0+spin=4")
     self.assertEqual(mo.spin, 4)
コード例 #4
0
 def test_to_from_string(self):
     fe3 = Specie("Fe", 3, {"spin": 5})
     self.assertEqual(str(fe3), "Fe3+spin=5")
     fe = Specie.from_string("Fe3+spin=5")
     self.assertEqual(fe.spin, 5)
     mo0 = Specie("Mo", 0, {"spin": 5})
     self.assertEqual(str(mo0), "Mo0+spin=5")
     mo = Specie.from_string("Mo0+spin=4")
     self.assertEqual(mo.spin, 4)
コード例 #5
0
 def test_to_from_string(self):
     fe3 = Specie("Fe", 3, {"spin": 5})
     self.assertEqual(str(fe3), "Fe3+,spin=5")
     fe = Specie.from_string("Fe3+,spin=5")
     self.assertEqual(fe.spin, 5)
     mo0 = Specie("Mo", 0, {"spin": 5})
     self.assertEqual(str(mo0), "Mo0+,spin=5")
     mo = Specie.from_string("Mo0+,spin=4")
     self.assertEqual(mo.spin, 4)
     fe_no_ox = Specie("Fe", oxidation_state=None, properties={"spin": 5})
     fe_no_ox_from_str = Specie.from_string("Fe,spin=5")
     self.assertEqual(fe_no_ox, fe_no_ox_from_str)
コード例 #6
0
 def test_reading_vasprun_xml(self):
     site_distance = 3.2
     specie_string = 'Li+'
     specie = Specie.from_string(specie_string)
     vasprun_dirs = [
         os.path.join(test_dir, 'latp_md/RUN_{}/vasprun.xml.gz'.format(i))
         for i in range(10, 30)
     ]
     da = DiffusivityAnalyzer.from_files(
         vasprun_dirs,
         str(specie.element),
         spec_dict={
             'lower_bound': 0.5 * site_distance * site_distance,
             'upper_bound': 0.5,
             'minimum_msd_diff': 0.5 * site_distance * site_distance,
         })
     ea = ErrorAnalysisFromDiffusivityAnalyzer(da,
                                               site_distance=site_distance)
     summary_info = ea.get_summary_dict(oxidized_specie=specie_string)
     self.assertAlmostEqual(summary_info['diffusivity'],
                            7.60175023036e-05,
                            places=5)
     self.assertAlmostEqual(
         summary_info['diffusivity_relative_standard_deviation'],
         0.382165427856,
         places=5)
     self.assertAlmostEqual(summary_info['n_jump'], 100.48841284, places=5)
     self.assertAlmostEqual(summary_info['conversion_factor'],
                            7675326.58284,
                            places=5)
     self.assertAlmostEqual(summary_info['temperature'], 1500, places=5)
     self.assertAlmostEqual(summary_info['conductivity'],
                            583.45915619213463,
                            places=5)
コード例 #7
0
def get_conversion_factor(structure, specie, temperature):
    """
    Conversion factor to convert between cm^2/s diffusivity measurements and
    mS/cm conductivity measurements based on number of atoms of diffusing
    species.
    :param structure (Structure): Input structure.
    :param specie (string/specie): Diffusing species string, must contain oxidation state.
    :param temperature (float): Temperature of the diffusion run in Kelvin.
    :return: Conversion factor.
        Conductivity (in mS/cm) = Conversion Factor * Diffusivity (in cm^2/s)
    """
    if type(specie) is Specie:
        df_sp = specie
    else:
        try:
            df_sp = Specie.from_string(specie)
        except:
            raise Exception(
                "Please provide oxidation decorated specie, like Li+, O2-")
    z = df_sp.oxi_state
    el, occu = list(structure.composition.items())[0]
    if isinstance(el, Specie):  # oxidation decorated structure
        n = structure.composition[specie]
    else:
        n = structure.composition[str(df_sp.element)]
    if n == 0:
        raise Exception("No specie {} in the structure composition: {}".format(
            specie, structure.composition))
    vol = structure.volume * 1e-24  # units cm^3
    N_A = 6.022140857e+23
    e = 1.6021766208e-19
    R = 8.3144598
    return 1000 * n / (vol * N_A) * z ** 2 * (N_A * e) ** 2 \
           / (R * temperature)
コード例 #8
0
 def get_summary_dict(self, oxidized_specie=None):
     """
     A summary of information
     :param oxidized_specie (str): specie string with oxidation state. If provided or specie in initial
         function is oxidized, it will calculate conductivity based on nernst-einstein relationship.
     :return: dict of diffusion information
         keys: D, D_components, specie, step_skip, temperature, msd, msd_component, dt, time_intervals_number
               spec_dict
     """
     d = {
         "diffusivity": self.diffusivity,
         "diffusivity_components": self.diffusivity_components,
         "specie": self.specie,
         "step_skip": self.step_skip,
         "temperature": self.temperature,
         "msd": self.msd,
         "msd_component": self.msd_component,
         "dt": self.dt,
         "time_intervals_number": self.time_intervals_number,
         "spec_dict": self.spec_dict,
         "drift_maximum": self.drift_maximum,
         "max_framework_displacement": self.max_framework_displacement
     }
     oxi = False
     if oxidized_specie:
         df_sp = Specie.from_string(oxidized_specie)
         oxi = True
     else:
         try:
             df_sp = Specie.from_string(self.specie)
             oxi = True
         except:
             pass
     if oxi:
         factor = get_conversion_factor(self.structure, df_sp,
                                        self.temperature)
         d['conductivity'] = factor * self.diffusivity
         d['conductivity_components'] = factor * self.diffusivity_components
         d['conversion_factor'] = factor
         d['oxidation_state'] = df_sp.oxi_state
     return d
コード例 #9
0
    def __init__(self, lambda_table=None, alpha=-5):
        #store the input table for the to_dict method
        self._lambda_table = lambda_table

        if not lambda_table:
            module_dir = os.path.dirname(__file__)
            json_file = os.path.join(module_dir, 'data', 'lambda.json')
            with open(json_file) as f:
                lambda_table = json.load(f)

        #build map of specie pairs to lambdas
        l = {}
        for row in lambda_table:
            if not row[0] == 'D1+' and not row[1] == 'D1+':
                s1 = Specie.from_string(row[0])
                s2 = Specie.from_string(row[1])
                l[frozenset([s1, s2])] = float(row[2])

        self._lambda = l
        self._alpha = alpha

        #create the partition functions Z and px
        sp_set = set()
        for key in self._lambda.keys():
            sp_set.update(key)
        px = dict.fromkeys(sp_set, 0.)
        Z = 0
        for s1, s2 in itertools.product(sp_set, repeat=2):
            value = math.exp(self._lambda.get(frozenset([s1, s2]),
                                              self._alpha))
            #not sure why the factor of 2 is here but it matches up
            #with BURP. BURP may actually be missing a factor of 2,
            #but it doesn't have a huge effect
            px[s1] += value / 2
            px[s2] += value / 2
            Z += value

        self._Z = Z
        self._px = px
        self.species_list = list(sp_set)
コード例 #10
0
ファイル: dimensionality.py プロジェクト: fraricci/pymatgen
def find_connected_atoms(struct, tolerance=0.45, ldict=JmolNN().el_radius):
    """
    Finds the list of bonded atoms.

    Author: "Gowoon Cheon"
    Email: "*****@*****.**"

    Args:
        struct (Structure): Input structure
        tolerance: length in angstroms used in finding bonded atoms. Two atoms
            are considered bonded if (radius of atom 1) + (radius of atom 2) +
            (tolerance) < (distance between atoms 1 and 2). Default
            value = 0.45, the value used by JMol and Cheon et al.
        ldict: dictionary of bond lengths used in finding bonded atoms. Values
            from JMol are used as default

    Returns:
        (np.ndarray): A numpy array of shape (number of bonded pairs, 2); each
        row of is of the form [atomi, atomj]. atomi and atomj are the indices of
        the atoms in the input structure. If any image of atomj is bonded to
        atomi with periodic boundary conditions, [atomi, atomj] is included in
        the list. If atomi is bonded to multiple images of atomj, it is only
        counted once.
    """
    n_atoms = len(struct.species)
    fc = np.array(struct.frac_coords)
    species = list(map(str, struct.species))

    # in case of charged species
    for i, item in enumerate(species):
        if item not in ldict.keys():
            species[i] = str(Specie.from_string(item).element)
    latmat = struct.lattice.matrix
    connected_list = []

    for i in range(n_atoms):
        for j in range(i + 1, n_atoms):
            max_bond_length = ldict[species[i]] + ldict[species[j]] + tolerance
            add_ij = False
            for move_cell in itertools.product(
                    [0, 1, -1], [0, 1, -1], [0, 1, -1]):
                if not add_ij:
                    frac_diff = fc[j] + move_cell - fc[i]
                    distance_ij = np.dot(latmat.T, frac_diff)
                    if np.linalg.norm(distance_ij) < max_bond_length:
                        add_ij = True
            if add_ij:
                connected_list.append([i, j])
    return np.array(connected_list)
コード例 #11
0
ファイル: dimensionality.py プロジェクト: tamuhey/pymatgen
def find_connected_atoms(struct, tolerance=0.45, ldict=JmolNN().el_radius):
    """
    Finds the list of bonded atoms.

    Author: "Gowoon Cheon"
    Email: "*****@*****.**"

    Args:
        struct (Structure): Input structure
        tolerance: length in angstroms used in finding bonded atoms. Two atoms
            are considered bonded if (radius of atom 1) + (radius of atom 2) +
            (tolerance) < (distance between atoms 1 and 2). Default
            value = 0.45, the value used by JMol and Cheon et al.
        ldict: dictionary of bond lengths used in finding bonded atoms. Values
            from JMol are used as default

    Returns:
        (np.ndarray): A numpy array of shape (number of bonded pairs, 2); each
        row of is of the form [atomi, atomj]. atomi and atomj are the indices of
        the atoms in the input structure. If any image of atomj is bonded to
        atomi with periodic boundary conditions, [atomi, atomj] is included in
        the list. If atomi is bonded to multiple images of atomj, it is only
        counted once.
    """
    n_atoms = len(struct.species)
    fc = np.array(struct.frac_coords)
    species = list(map(str, struct.species))

    # in case of charged species
    for i, item in enumerate(species):
        if item not in ldict.keys():
            species[i] = str(Specie.from_string(item).element)
    latmat = struct.lattice.matrix
    connected_list = []

    for i in range(n_atoms):
        for j in range(i + 1, n_atoms):
            max_bond_length = ldict[species[i]] + ldict[species[j]] + tolerance
            add_ij = False
            for move_cell in itertools.product([0, 1, -1], [0, 1, -1],
                                               [0, 1, -1]):
                if not add_ij:
                    frac_diff = fc[j] + move_cell - fc[i]
                    distance_ij = np.dot(latmat.T, frac_diff)
                    if np.linalg.norm(distance_ij) < max_bond_length:
                        add_ij = True
            if add_ij:
                connected_list.append([i, j])
    return np.array(connected_list)
コード例 #12
0
ファイル: dimensionality.py プロジェクト: utopianf/pymatgen
def find_connected_atoms(struct, tolerance=0.45, ldict=JmolNN().el_radius):
    """
    Finds bonded atoms and returns a adjacency matrix of bonded atoms.

    Author: "Gowoon Cheon"
    Email: "*****@*****.**"

    Args:
        struct (Structure): Input structure
        tolerance: length in angstroms used in finding bonded atoms. Two atoms
            are considered bonded if (radius of atom 1) + (radius of atom 2) +
            (tolerance) < (distance between atoms 1 and 2). Default
            value = 0.45, the value used by JMol and Cheon et al.
        ldict: dictionary of bond lengths used in finding bonded atoms. Values
            from JMol are used as default

    Returns:
        (np.ndarray): A numpy array of shape (number of atoms, number of atoms);
        If any image of atom j is bonded to atom i with periodic boundary
        conditions, the matrix element [atom i, atom j] is 1.
    """
    # pylint: disable=E1136
    n_atoms = len(struct.species)
    fc = np.array(struct.frac_coords)
    fc_copy = np.repeat(fc[:, :, np.newaxis], 27, axis=2)
    neighbors = np.array(
        list(itertools.product([0, 1, -1], [0, 1, -1], [0, 1, -1]))).T
    neighbors = np.repeat(neighbors[np.newaxis, :, :], 1, axis=0)
    fc_diff = fc_copy - neighbors
    species = list(map(str, struct.species))
    # in case of charged species
    for i, item in enumerate(species):
        if item not in ldict.keys():
            species[i] = str(Specie.from_string(item).element)
    latmat = struct.lattice.matrix
    connected_matrix = np.zeros((n_atoms, n_atoms))

    for i in range(n_atoms):
        for j in range(i + 1, n_atoms):
            max_bond_length = ldict[species[i]] + ldict[species[j]] + tolerance
            frac_diff = fc_diff[j] - fc_copy[i]
            distance_ij = np.dot(latmat.T, frac_diff)
            # print(np.linalg.norm(distance_ij,axis=0))
            if sum(np.linalg.norm(distance_ij, axis=0) < max_bond_length) > 0:
                connected_matrix[i, j] = 1
                connected_matrix[j, i] = 1
    return connected_matrix
コード例 #13
0
ファイル: dimensionality.py プロジェクト: ExpHP/pymatgen
def find_connected_atoms(struct, tolerance=0.45, ldict=JmolNN().el_radius):
    """
    Finds bonded atoms and returns a adjacency matrix of bonded atoms.

    Author: "Gowoon Cheon"
    Email: "*****@*****.**"

    Args:
        struct (Structure): Input structure
        tolerance: length in angstroms used in finding bonded atoms. Two atoms
            are considered bonded if (radius of atom 1) + (radius of atom 2) +
            (tolerance) < (distance between atoms 1 and 2). Default
            value = 0.45, the value used by JMol and Cheon et al.
        ldict: dictionary of bond lengths used in finding bonded atoms. Values
            from JMol are used as default

    Returns:
        (np.ndarray): A numpy array of shape (number of atoms, number of atoms);
        If any image of atom j is bonded to atom i with periodic boundary
        conditions, the matrix element [atom i, atom j] is 1.
    """
    n_atoms = len(struct.species)
    fc = np.array(struct.frac_coords)
    fc_copy = np.repeat(fc[:, :, np.newaxis], 27, axis=2)
    neighbors = np.array(list(itertools.product([0, 1, -1], [0, 1, -1], [0, 1, -1]))).T
    neighbors = np.repeat(neighbors[np.newaxis, :, :], 1, axis=0)
    fc_diff = fc_copy - neighbors
    species = list(map(str, struct.species))
    # in case of charged species
    for i, item in enumerate(species):
        if not item in ldict.keys():
            species[i] = str(Specie.from_string(item).element)
    latmat = struct.lattice.matrix
    connected_matrix = np.zeros((n_atoms,n_atoms))

    for i in range(n_atoms):
        for j in range(i + 1, n_atoms):
            max_bond_length = ldict[species[i]] + ldict[species[j]] + tolerance
            frac_diff = fc_diff[j] - fc_copy[i]
            distance_ij = np.dot(latmat.T, frac_diff)
            # print(np.linalg.norm(distance_ij,axis=0))
            if sum(np.linalg.norm(distance_ij, axis=0) < max_bond_length) > 0:
                connected_matrix[i, j] = 1
                connected_matrix[j, i] = 1
    return connected_matrix
コード例 #14
0
    def _species_from_bondstr(self, bondstr):
        """
        Create a 2-tuple of species objects from a bond string.

        Args:
            bondstr (str): A string representing a bond between elements or
                species, or a combination of the two. For example, "Cl- - Cs+".

        Returns:
            ((Species)): A tuple of pymatgen Species objects in alphabetical
                order.
        """
        species = []
        for ss in bondstr.split(self.token):
            try:
                species.append(Specie.from_string(ss))
            except ValueError:
                d = {'element': ss, 'oxidation_state': 0}
                species.append(Specie.from_dict(d))
        return tuple(species)
コード例 #15
0
ファイル: composition.py プロジェクト: matk86/pymatgen
    def oxi_state_guesses(self, oxi_states_override=None, target_charge=0,
                          all_oxi_states=False, max_sites=None):
        """
        Checks if the composition is charge-balanced and returns back all
        charge-balanced oxidation state combinations. Composition must have
        integer values. Note that more num_atoms in the composition gives
        more degrees of freedom. e.g., if possible oxidation states of
        element X are [2,4] and Y are [-3], then XY is not charge balanced
        but X2Y2 is. Results are returned from most to least probable based
        on ICSD statistics. Use max_sites to improve performance if needed.

        Args:
            oxi_states_override (dict): dict of str->list to override an
                element's common oxidation states, e.g. {"V": [2,3,4,5]}
            target_charge (int): the desired total charge on the structure.
                Default is 0 signifying charge balance.
            all_oxi_states (bool): if True, an element defaults to
                all oxidation states in pymatgen Element.icsd_oxidation_states.
                Otherwise, default is Element.common_oxidation_states. Note
                that the full oxidation state list is *very* inclusive and
                can produce nonsensical results.
            max_sites (int): if possible, will reduce Compositions to at most
                this many many sites to speed up oxidation state guesses. Set
                to -1 to just reduce fully.

        Returns:
            A list of dicts - each dict reports an element symbol and average
                oxidation state across all sites in that composition. If the
                composition is not charge balanced, an empty list is returned.
        """

        comp = self.copy()

        # reduce Composition if necessary
        if max_sites == -1:
            comp = self.reduced_composition

        elif max_sites and comp.num_atoms > max_sites:
            reduced_comp, reduced_factor = self.\
                get_reduced_composition_and_factor()
            if reduced_factor > 1:
                reduced_comp *= max(1, int(max_sites / reduced_comp.num_atoms))
                comp = reduced_comp  # as close to max_sites as possible
            if comp.num_atoms > max_sites:
                raise ValueError("Composition {} cannot accommodate max_sites "
                                 "setting!".format(comp))

        # Load prior probabilities of oxidation states, used to rank solutions
        if not Composition.oxi_prob:
            module_dir = os.path.join(os.path.
                                      dirname(os.path.abspath(__file__)))
            all_data = loadfn(os.path.join(module_dir, "..",
                                           "analysis", "icsd_bv.yaml"))
            Composition.oxi_prob = {Specie.from_string(sp): data
                                    for sp, data in
                                    all_data["occurrence"].items()}

        oxi_states_override = oxi_states_override or {}

        # assert: Composition only has integer amounts
        if not all(amt == int(amt) for amt in comp.values()):
            raise ValueError("Charge balance analysis requires integer "
                             "values in Composition!")

        # for each element, determine all possible sum of oxidations
        # (taking into account nsites for that particular element)
        el_amt = comp.get_el_amt_dict()
        els = el_amt.keys()
        el_sums = []  # matrix: dim1= el_idx, dim2=possible sums
        el_sum_scores = defaultdict(set)  # dict of el_idx, sum -> score
        for idx, el in enumerate(els):
            el_sum_scores[idx] = {}
            el_sums.append([])
            if oxi_states_override.get(el):
                oxids = oxi_states_override[el]
            elif all_oxi_states:
                oxids = Element(el).oxidation_states
            else:
                oxids = Element(el).icsd_oxidation_states or \
                        Element(el).oxidation_states

            # get all possible combinations of oxidation states
            # and sum each combination
            for oxid_combo in combinations_with_replacement(oxids,
                                                            int(el_amt[el])):
                if sum(oxid_combo) not in el_sums[idx]:
                    el_sums[idx].append(sum(oxid_combo))
                    score = sum([Composition.oxi_prob.get(Specie(el, o), 0) for
                                 o in oxid_combo])  # how probable is this combo?
                    el_sum_scores[idx][sum(oxid_combo)] = max(
                        el_sum_scores[idx].get(sum(oxid_combo), 0), score)


        all_sols = []  # will contain all solutions
        all_scores = []  # will contain a score for each solution
        for x in product(*el_sums):
            # each x is a trial of one possible oxidation sum for each element
            if sum(x) == target_charge:  # charge balance condition
                el_sum_sol = dict(zip(els, x))  # element->oxid_sum
                # normalize oxid_sum by amount to get avg oxid state
                sol = {el: v / el_amt[el] for el, v in el_sum_sol.items()}
                all_sols.append(sol)  # add the solution to the list of solutions

                # determine the score for this solution
                score = 0
                for idx, v in enumerate(x):
                    score += el_sum_scores[idx][v]
                all_scores.append(score)

        # sort the solutions by highest to lowest score
        all_sols = [x for (y, x) in sorted(zip(all_scores, all_sols),
                                           key=lambda pair: pair[0],
                                           reverse=True)]
        return all_sols
コード例 #16
0
 def setUp(self):
     self.specie1 = Specie.from_string("Fe2+")
     self.specie2 = Specie("Fe", 3)
     self.specie3 = Specie("Fe", 2)
     self.specie4 = Specie("Fe", 2, {"spin": 5})
コード例 #17
0
 def setUp(self):
     self.specie1 = Specie.from_string("Fe2+")
     self.specie2 = Specie("Fe", 3)
     self.specie3 = Specie("Fe", 2)
     self.specie4 = Specie("Fe", 2, {"spin": 5})
コード例 #18
0
                           "N", "P", "As", "Sb",
                           "O", "S", "Se", "Te",
                           "F", "Cl", "Br", "I"])

module_dir = os.path.dirname(os.path.abspath(__file__))

#Read in BV parameters.
BV_PARAMS = {}
with open(os.path.join(module_dir, "bvparam_1991.json"), "r") as f:
    for k, v in json.load(f).items():
        BV_PARAMS[Element(k)] = v

#Read in json containing data-mined ICSD BV data.
with open(os.path.join(module_dir, "icsd_bv.json"), "r") as f:
    all_data = json.load(f)
    ICSD_BV_DATA = {Specie.from_string(sp): data
                    for sp, data in all_data["bvsum"].items()}
    PRIOR_PROB = {Specie.from_string(sp): data
                  for sp, data in all_data["occurrence"].items()}


def calculate_bv_sum(site, nn_list, scale_factor=1):
    """
    Calculates the BV sum of a site.

    Args:
        site:
            The site
        nn_list:
            List of nearest neighbors in the format [(nn_site, dist), ...].
        anion_el:
コード例 #19
0
def Analyze_Voronoi_Nodes(args):
    """
    A standard process to apply all filters. Zeo++ finds all possible polyhedrons and corresponding sites while this class
    will screen bad sites and merge them. The program currently support CIF input files ONLY;
    
    Args:
        args.cif_file (str): Directory of CIF file
        args.input_file (yaml): Directory of input file which specify filter parameters. The input file must be a yaml:
        
                                Mandatory:
                                    1. SPECIE: a string of target diffusion specie, with oxidation state;
                                               e.g. Li+: Li specie with +1 oxidation state.
                                            
                                Optional: (Each parameter must be added according to filters specified)
                                    Overall:
                                    2. ANION: a string of potential anion type in the structure.
                                              This parameter will automatically specify parameters for further analysis:
                                                  BV_UP
                                                  BV_LW
                                                  R_CUT
                                              However, these parameters will be overwritten if they're explicitly assigned.
                                              
                                              e.g. S (sulfur) will have R_CUT: 1.5 A,
                                                   If input yaml file has another R_CUT to be 2 A, the final R_CUT will be 2 A.
                                              
                                              Currently support following anions:
                                                               |   BV_LW   |   BV_UP   |   R_CUT(A)   |
                                                  ------------------------------------------------------
                                                  S (sulfur)   |    0.4    |    1.1    |      2.5     |
                                                  O (oxygen)   |    0.5    |    1.2    |      2.3     |
                                              
                                    VoroPerco:
                                    3. PERCO_R: the percolation radius for diffusion specie;
                                    VoroBV:
                                    4. BV_UP: the maximum bond valence of a site which considered to be appropriate;
                                    5. BV_LW: the minimum bond valence of a site which considered to be appropriate;
                                    Coulomb:
                                    6. R_CUT: the minimum distance between target specie and nearest ion (either anion or
                                              cation);
                                    VoroLong:
                                    7. LONG: the criteria to decide whether a node is a long node or not. Unit: A;
                                    MergeSite:
                                    8. NEIGHBOR: the distance criteria to decide whether 2 sites / nodes are too close to 
                                                 each other. Unit: A.
                                    9. LONG
                                    
        args.filters (str): strings to specify which filter to use in analysis:
        
                            FILTER: filters applied. Currently support following filters:
                                    Ordered: OrderFrameworkFilter
                                    PropOxi: OxidationStateFilter
                                    VoroPerco: TAPercolateFilter
                                    Coulomb: TACoulombReplusionFilter
                                    VoroBV: TABvFilter
                                    VoroLong: TALongFilter
                                    MergeSite: OptimumSiteFilter
                                    VoroInfo: TALongFilter, but only output the center coordinates and length of each node
                                
    Output:
        CIF files after applying each filter. The predicted sites for target specie will be represented as sites with 50%
        partial occupancy.
        Note that some filters may be fundamental (decide whether they're good CIFs or not) and they may have
        no output structures.
        e.g. if applying OxidationStateFilter, TAPercolateFilter and TABvFilter,
             there will be 2 output CIF files:
                 1. CIF with all accessible sites;
                 2. CIF with all sites having good bond valence;
             OxidationStateFilter has no ouput structure.
    """
    import Topological_Analysis

    # built-in radius for different species
    va_dir = os.path.dirname(Topological_Analysis.__file__)
    radii_yaml_dir = os.path.join(va_dir, 'files/radii.yaml')
    with open(radii_yaml_dir, 'r') as f:
        radii = yaml.load(f)
    f.close()

    # read structure from CIF file
    name = args.cif_file[:-4]  # the last 4 characters are '.cif'
    precif = CifParser(args.cif_file, occupancy_tolerance=2.0)
    structure = precif.get_structures(primitive=False)[0].copy()
    # for input parameter file
    with open(args.input_file, 'r') as f:
        input_parameters = yaml.load(f)
    f.close()

    # target specie
    sp = Specie.from_string(input_parameters['SPECIE'])

    # other possible parameters
    if 'ANION' in input_parameters.keys():
        if input_parameters['ANION'].lower() == 's':
            bv_range = (0.4, 1.1)
            rc = 2.5
        elif input_parameters['ANION'].lower() == 'o':
            bv_range = (0.5, 1.2)
            rc = 2.3
        else:
            print '##    Unsupported anion type: {}'.format(
                input_parameters['ANION'])
            bv_range = (0, 1.5)
            rc = 2.0

    if 'PERCO_R' in input_parameters.keys():
        pr = input_parameters['PERCO_R']  # percolation radius
    else:
        pr = None

    try:
        # these exist further bond valence limits to overwrite existing ones
        tmp = bv_range
        if 'BV_UP' in input_parameters.keys():
            bv_range = (bv_range[0], input_parameters['BV_UP'])
        if 'BV_LW' in input_parameters.keys():
            bv_range = (input_parameters['BV_LW'], bv_range[1])
    except:
        # these's no anion type to assign bond valence range
        if ('BV_UP'
                in input_parameters.keys()) and ('BV_LW'
                                                 in input_parameters.keys()):
            bv_range = (input_parameters['BV_LW'], input_parameters['BV_UP'])
        else:
            bv_range = None

    if 'R_CUT' in input_parameters.keys():
        rc = input_parameters['R_CUT']  # cut-off distance of coulomb replusion
    else:
        try:
            tmp = rc  # to check whether parameter exists, if it doesn't exist, set it to None.
            # only necessary for bv_range and r_cut because these 2 may be set by ANION parameter
        except:
            rc = None

    if 'LONG' in input_parameters.keys():
        long = input_parameters[
            'LONG']  # cut-off distance to decide whether a node is long or not
    else:
        long = None
    if 'NEIGHBOR' in input_parameters.keys():
        nn = input_parameters[
            'NEIGHBOR']  # cut-off distance to decide whether 2 sites are neighbors
    else:
        nn = None

    # temporary parameters for filters applied
    frame_structure = None
    org_frame = None
    node_structure = None
    predicted_structure = None

    for f_index, f in enumerate(args.filters):
        print 'Step {}: {}'.format(f_index, f)

        if f.lower() == 'ordered':
            # Check whether the framework is ordered or not.
            print '#     Check framework disordering.'
            orderFrame = OrderFrameworkFilter(structure.copy(), radii, sp)
            org_structure = orderFrame.virtual_structure.copy()
            frame_structure = orderFrame.virtual_framework.copy()
            org_frame = orderFrame.framework.copy()
            print '#     Check finishes.'

        if f.lower() == 'propoxi':
            # Check oxidation states in structures. This is necessary for bond valence filter.
            print '#     Check oxidation states in structure.'
            PropOxi = OxidationStateFilter(org_structure.copy())
            if not PropOxi.decorated:
                print '##    Oxidation state check fails...'
                sys.exit()
            else:
                print '#     Check finishes.'

        elif f.lower() == 'voroperco':
            # Check whether there's enough space for percolation.
            print '#     Check Voronoi percolation raduis.'
            if pr:
                VoroPerco = TAPercolateFilter(org_structure.copy(), radii, sp,
                                              pr)
            else:
                print '##    No percolation radius provided...'
                sys.exit()

            if not VoroPerco.analysis_results:
                print '##    Cannot percolate...'
                sys.exit()
            else:
                """
                    The Voronoi analysis results include:
                        Voronoi_accessed_node_structure: A structure with all nodes (with Voronoi radius added to the property
                                                         of each node);
                        Voronoi_structure: A structure containing nodes whose Voronoi radius is greater than a certain value;
                        Framework: The framework structure with no target diffusion specie;
                        free_sph_max_dia: Maximum spherical diameter in the structure;
                        ......
                    To see other results, please use 'analysis_keys' attribute of the class.
                """
                results = deepcopy(VoroPerco.analysis_results)
                print '#     Percolation diameter (A): {}'.format(
                    round(results['free_sph_max_dia'], 3))
                output_structure = org_frame.copy()
                if results['Voronoi_accessed_node_structure']:
                    node_structure = results[
                        'Voronoi_accessed_node_structure'].copy()
                    for nodes in node_structure.copy():
                        output_structure.append(str(sp),
                                                nodes.coords,
                                                coords_are_cartesian=True)
                    CifWriter(output_structure).write_file(
                        '{}_all_accessed_node.cif'.format(name))
                    print '#     Percolation check finishes.'
                else:
                    print '##    Errors in Voronoi analysis structure...'

        elif f.lower() == 'coulomb':
            print '#     Check Coulomb replusion effects.'
            if (not frame_structure) or (not node_structure):
                print '##    No framework and node structure provided for Coulomb Replusion analysis...'
                sys.exit()
            elif not rc:
                print '##    No Coulomb replusion cut-off distance provided...'
                sys.exit()
            else:
                if sp.oxi_state < 0:
                    ion = 'anion'
                else:
                    ion = 'cation'
                print '#     Processing Coulomb replusion check.'
                print '#     {} effect detected, minimum distance to {}s is {} A.'.format(
                    ion, ion, round(rc, 3))
                CoulRep = TACoulombReplusionFilter(node_structure.copy(),
                                                   frame_structure.copy(),
                                                   prune=ion,
                                                   min_d_to_ion=rc)
                if CoulRep.final_structure:
                    node_structure = CoulRep.final_structure.copy()
                    output_structure = org_frame.copy()
                    for node in node_structure.copy():
                        output_structure.append(str(sp),
                                                node.coords,
                                                coords_are_cartesian=True)
                    CifWriter(output_structure).write_file(
                        '{}_coulomb_filtered.cif'.format(name))
                    print '#     Coulomb replusion check finishes.'
                else:
                    print '##    All available nodes will experience high Coulomb replusion...'
                    print '##    The structure is either unreasonable or the replusion radius cut-off is too large...'
                    sys.exit()

        elif f.lower() == 'vorobv':
            print '#     Check bond valence limits.'
            if (not frame_structure) or (not node_structure):
                print '##    No framework and node structure provided for bond valence analysis...'
                sys.exit()
            elif not bv_range:
                print '##    No bond valence range provided...'
                sys.exit()
            else:
                print '#     Processing bond valence check.'
                print '#     Bond valence limitation: {} - {}'.format(
                    bv_range[0], bv_range[1])

                VoroBv = TABvFilter(node_structure.copy(),
                                    frame_structure.copy(), bv_range)
                if VoroBv.final_structure:
                    node_structure = VoroBv.final_structure.copy()
                    output_structure = org_frame.copy()  # output cif structure
                    output_doc = {}  # output csv file
                    variables = [
                        'Cartesian_Coords', 'Voronoi_R', 'Bond_Valence'
                    ]
                    for i in variables:
                        output_doc[i] = []
                    for node in node_structure.copy():
                        output_structure.append(str(sp),
                                                node.coords,
                                                coords_are_cartesian=True)
                        tmp_coords = [round(n, 4) for n in node.coords]
                        output_doc['Cartesian_Coords'].append(tmp_coords)
                        output_doc['Voronoi_R'].append(
                            round(node.properties['voronoi_radius'], 3))
                        output_doc['Bond_Valence'].append(
                            round(node.properties['valence_state'], 2))

                    CifWriter(output_structure).write_file(
                        '{}_bond_valence_filtered.cif'.format(name))
                    df = pds.DataFrame(data=output_doc).sort_values(
                        by=['Voronoi_R'])
                    df = df.reindex(variables, axis=1)
                    df.to_csv('{}_bv_info.csv'.format(name))

                    print '#     Bond valence check finishes.'
                else:
                    print '##    All available nodes are excluded for bad bond valences...'
                    print '##    The structure is either unreasonable or the bond valence range is bad...'
                    sys.exit()

        elif f.lower() == 'vorolong':
            print '#     Check long nodes in structure.'
            if not node_structure:
                print '##    No node structure provided for long Voronoi node analysis...'
                sys.exit()
            elif not long:
                print '##    No length provided to decide Voronoi node length...'
                sys.exit()
            else:
                print '#     Processing Voronoi length check.'
                print '#     Voronoi length limitation: {} A'.format(
                    round(long, 3))
                VoroLong = TALongFilter(node_structure.copy(),
                                        long,
                                        use_voro_radii=True)
                print '#     Maximum node length detected: {} A'.format(
                    round(VoroLong.longest_node_length, 3))
                output_doc = {}
                variables = ['Center_Coords', 'Node_Length']
                for i in variables:
                    output_doc[i] = []
                for i in VoroLong.clusters:
                    tmp_coords = [round(n, 4) for n in i[0]]
                    output_doc['Center_Coords'].append(tmp_coords)
                    output_doc['Node_Length'].append(round(i[1], 4))
                df = pds.DataFrame(data=output_doc).sort_values(
                    by=['Node_Length'])
                df = df.reindex(variables, axis=1)
                df.to_csv('{}_node_length_info.csv'.format(name))
                print '#     Central node information written.'
                if VoroLong.has_long_node:
                    print '#     Long node check finishes.'
                else:
                    print '##    The structure has no long nodes or node length restriction is bad...'
                    print '##    Please check the node length CSV for more information...'
                    sys.exit()

        elif f.lower() == 'voroinfo':
            print '#     Output the center coordinates and length of each node......'
            if not node_structure:
                print '##    No node structure provided for Voronoi information...'
                sys.exit()
            else:
                VoroLong = TALongFilter(node_structure.copy(),
                                        0,
                                        use_voro_radii=True)
                print '#     Maximum node length detected: {} A'.format(
                    round(VoroLong.longest_node_length, 3))
                output_doc = {}
                variables = ['Center_Coords', 'Node_Length']
                for i in variables:
                    output_doc[i] = []
                for i in VoroLong.clusters:
                    tmp_coords = [round(n, 4) for n in i[0]]
                    output_doc['Center_Coords'].append(tmp_coords)
                    output_doc['Node_Length'].append(round(i[1], 4))
                df = pds.DataFrame(data=output_doc).sort_values(
                    by=['Node_Length'])
                df = df.reindex(variables, axis=1)
                df.to_csv('{}_node_length_info.csv'.format(name))
                print '#     Voronoi node information written.'

        elif f.lower() == 'mergesite':
            # before we use TAOptimumSiteFilter, we need to have a list of different clusters,
            # thus must use TADenseNeighbor and TALongFilter. Also note that all clusters in the list must be.
            if not node_structure:
                print '##    No node structure provided for optimizing sites...'
                sys.exit()
            if (not nn) or (not long):
                print '##    No neighbor distance cut-off and long node cut-off provided for site optimization...'
                sys.exit()

            voro_dense = TADenseNeighbor(node_structure.copy(),
                                         close_criteria=1,
                                         big_node_radius=0,
                                         radius_range=[0, 0],
                                         use_radii_ratio=True)
            voro_long = TALongFilter(node_structure.copy(),
                                     0,
                                     use_voro_radii=True)
            cluster_list = voro_dense.clustering(node_structure.copy(), 1,
                                                 True, True)

            long_list = []
            short_list = []
            for i in cluster_list:
                if voro_long.get_cluster_length(i,
                                                use_voro_radii=True) >= long:
                    long_list.append(i)
                else:
                    short_list.append(i)
            print '#     Processing site optimization: nearest neighbor cut-off {} A.'.format(
                round(nn, 3))
            OpSite = TAOptimumSiteFilter(org_structure.copy(),
                                         nn,
                                         sp,
                                         sort_type='None',
                                         use_exp_ordered_site=False)
            opt_long_list = []
            opt_short_list = []
            for i in long_list:
                tmp_list = OpSite.optimize_cluster(i, nn, sort_type='radius')
                for j in tmp_list:
                    opt_long_list.append(j)
            for i in short_list:
                tmp_list = OpSite.optimize_cluster(i, nn, sort_type='radius')
                for j in tmp_list:
                    opt_short_list.append(j)
            print '#     Long node number: {}'.format(len(opt_long_list))
            print '#     Short node number: {}'.format(len(opt_short_list))
            new_list = []
            for i in opt_long_list:
                new_list.append(i)
            for i in opt_short_list:
                new_list.append(i)
            OpSite.add_cluster(new_list)

            output_structure = OpSite.site_structure.copy()
            half_list = [
            ]  # it seems 50% occupancy sites are easier to see. You may directly use output_structure otherwise
            for i in output_structure:
                ppt = deepcopy(i.properties)
                new_i = PeriodicSite({str(sp): 0.5},
                                     i.coords,
                                     i.lattice,
                                     to_unit_cell=False,
                                     coords_are_cartesian=True,
                                     properties=ppt)
                half_list.append(new_i)
            half_structure = Structure.from_sites(half_list)
            CifWriter(half_structure).write_file(
                '{}_{}_optimized_sites.cif'.format(name, 'radius'))
            # CifWriter(output_structure).write_file('{}_{}_optimized_sites.cif'.format(name, 'radius'))

            # for predicted structure:
            tot_num = org_structure.composition[sp]
            current_num = OpSite.site_structure.composition.num_atoms
            ratio = tot_num / current_num
            if ratio > 1:
                print '##    Prediction error, please be cautious about the predicted results.'
                print '##    Please also double check whether the input parameters are reasonable...'
                ratio = 1
            prediction = org_frame.copy()
            for site in OpSite.site_structure.copy():
                prediction.append({str(sp): ratio},
                                  site.coords,
                                  coords_are_cartesian=True)
            prediction.sort()
            predicted_structure = prediction.copy()
            print '#     Site optimization finishes.'

        else:
            print '##    Unsupported operation...'
    if predicted_structure:
        comp = org_structure.composition.reduced_formula
        CifWriter(predicted_structure).write_file('{}_{}_predicted.cif'.format(
            name, comp))
        cmds = cmd_by_radius(half_structure, 0.5)
        cmd_file = open('{}_cmd'.format(name), 'w')
        cmd_file.write('mol new\n')
        for lines in cmds:
            cmd_file.write(lines)
        cmd_file.close()
コード例 #20
0
ファイル: composition.py プロジェクト: albalu/pymatgen
    def _get_oxid_state_guesses(self, all_oxi_states, max_sites, oxi_states_override, target_charge):
        """
        Utility operation for guessing oxidation states.

        See `oxi_state_guesses` for full details. This operation does the calculation
        of the most likely oxidation states

        Args:
            oxi_states_override (dict): dict of str->list to override an
                element's common oxidation states, e.g. {"V": [2,3,4,5]}
            target_charge (int): the desired total charge on the structure.
                Default is 0 signifying charge balance.
            all_oxi_states (bool): if True, an element defaults to
                all oxidation states in pymatgen Element.icsd_oxidation_states.
                Otherwise, default is Element.common_oxidation_states. Note
                that the full oxidation state list is *very* inclusive and
                can produce nonsensical results.
            max_sites (int): if possible, will reduce Compositions to at most
                this many many sites to speed up oxidation state guesses. Set
                to -1 to just reduce fully.
        Returns:
            A list of dicts - each dict reports an element symbol and average
                oxidation state across all sites in that composition. If the
                composition is not charge balanced, an empty list is returned.
            A list of dicts - each dict maps the element symbol to a list of
                oxidation states for each site of that element. For example, Fe3O4 could
                return a list of [2,2,2,3,3,3] for the oxidation states of If the composition
                is

            """
        comp = self.copy()
        # reduce Composition if necessary
        if max_sites == -1:
            comp = self.reduced_composition

        elif max_sites and comp.num_atoms > max_sites:
            reduced_comp, reduced_factor = self. \
                get_reduced_composition_and_factor()
            if reduced_factor > 1:
                reduced_comp *= max(1, int(max_sites / reduced_comp.num_atoms))
                comp = reduced_comp  # as close to max_sites as possible
            if comp.num_atoms > max_sites:
                raise ValueError("Composition {} cannot accommodate max_sites "
                                 "setting!".format(comp))

        # Load prior probabilities of oxidation states, used to rank solutions
        if not Composition.oxi_prob:
            module_dir = os.path.join(os.path.
                                      dirname(os.path.abspath(__file__)))
            all_data = loadfn(os.path.join(module_dir, "..",
                                           "analysis", "icsd_bv.yaml"))
            Composition.oxi_prob = {Specie.from_string(sp): data
                                    for sp, data in
                                    all_data["occurrence"].items()}
        oxi_states_override = oxi_states_override or {}
        # assert: Composition only has integer amounts
        if not all(amt == int(amt) for amt in comp.values()):
            raise ValueError("Charge balance analysis requires integer "
                             "values in Composition!")

        # for each element, determine all possible sum of oxidations
        # (taking into account nsites for that particular element)
        el_amt = comp.get_el_amt_dict()
        els = el_amt.keys()
        el_sums = []  # matrix: dim1= el_idx, dim2=possible sums
        el_sum_scores = defaultdict(set)  # dict of el_idx, sum -> score
        el_best_oxid_combo = {}  # dict of el_idx, sum -> oxid combo with best score
        for idx, el in enumerate(els):
            el_sum_scores[idx] = {}
            el_best_oxid_combo[idx] = {}
            el_sums.append([])
            if oxi_states_override.get(el):
                oxids = oxi_states_override[el]
            elif all_oxi_states:
                oxids = Element(el).oxidation_states
            else:
                oxids = Element(el).icsd_oxidation_states or \
                        Element(el).oxidation_states

            # get all possible combinations of oxidation states
            # and sum each combination
            for oxid_combo in combinations_with_replacement(oxids,
                                                            int(el_amt[el])):

                # List this sum as a possible option
                oxid_sum = sum(oxid_combo)
                if oxid_sum not in el_sums[idx]:
                    el_sums[idx].append(oxid_sum)

                # Determine how probable is this combo?
                score = sum([Composition.oxi_prob.get(Specie(el, o), 0) for
                             o in oxid_combo])

                # If it is the most probable combo for a certain sum,
                #   store the combination
                if oxid_sum not in el_sum_scores[idx] or score > el_sum_scores[idx].get(oxid_sum, 0):
                    el_sum_scores[idx][oxid_sum] = score
                    el_best_oxid_combo[idx][oxid_sum] = oxid_combo

        # Determine which combination of oxidation states for each element
        #    is the most probable
        all_sols = []  # will contain all solutions
        all_oxid_combo = []  # will contain the best combination of oxidation states for each site
        all_scores = []  # will contain a score for each solution
        for x in product(*el_sums):
            # each x is a trial of one possible oxidation sum for each element
            if sum(x) == target_charge:  # charge balance condition
                el_sum_sol = dict(zip(els, x))  # element->oxid_sum
                # normalize oxid_sum by amount to get avg oxid state
                sol = {el: v / el_amt[el] for el, v in el_sum_sol.items()}
                all_sols.append(sol)  # add the solution to the list of solutions

                # determine the score for this solution
                score = 0
                for idx, v in enumerate(x):
                    score += el_sum_scores[idx][v]
                all_scores.append(score)

                # collect the combination of oxidation states for each site
                all_oxid_combo.append(dict((e,el_best_oxid_combo[idx][v]) for idx, (e,v) in enumerate(zip(els,x))))

        # sort the solutions by highest to lowest score
        if len(all_scores) > 0:
            all_sols, all_oxid_combo = zip(*[(y, x) for (z, y, x) in sorted(zip(all_scores, all_sols, all_oxid_combo),
                                                                            key=lambda pair: pair[0],
                                                                            reverse=True)])
        return all_sols, all_oxid_combo
コード例 #21
0
        "H", "B", "C", "Si", "N", "P", "As", "Sb", "O", "S", "Se", "Te", "F",
        "Cl", "Br", "I"
    ]
]

module_dir = os.path.dirname(os.path.abspath(__file__))

# Read in BV parameters.
BV_PARAMS = {}
for k, v in loadfn(os.path.join(module_dir, "bvparam_1991.yaml")).items():
    BV_PARAMS[Element(k)] = v

# Read in yaml containing data-mined ICSD BV data.
all_data = loadfn(os.path.join(module_dir, "icsd_bv.yaml"))
ICSD_BV_DATA = {
    Specie.from_string(sp): data
    for sp, data in all_data["bvsum"].items()
}
PRIOR_PROB = {
    Specie.from_string(sp): data
    for sp, data in all_data["occurrence"].items()
}


def calculate_bv_sum(site, nn_list, scale_factor=1.0):
    """
    Calculates the BV sum of a site.

    Args:
        site (PeriodicSite): The central site to calculate the bond valence
        nn_list ([Neighbor]): A list of namedtuple Neighbors having "distance"
コード例 #22
0
ファイル: analyze_aimd.py プロジェクト: adelaiden/aimd
def Analyze_VASP_MD(args):
    """
    Analyze diffusivity from a series vasprun.xml (or vasprun.xml.gz) files at one
            temperature
    :param args: please check main function for details of args
    :return:
    """
    vasprun_dirs = []
    for i in range(args.runs_start, args.runs_end + 1):
        if os.path.exists(
                os.path.join(args.folder_feature + str(i), 'vasprun.xml.gz')):
            vasprun_dirs.append(
                os.path.join(args.folder_feature + str(i), 'vasprun.xml.gz'))
        elif os.path.exists(
                os.path.join(args.folder_feature + str(i), 'vasprun.xml')):
            vasprun_dirs.append(
                os.path.join(args.folder_feature + str(i), 'vasprun.xml'))
        else:
            raise Exception(
                "No vasprun.xml or vasprun.xml.gz in folder {}".format(
                    args.folder_feature + str(i)))

    # In analyzing Arrhenius relationship, it is required to provide charged specie. To keep consistent, I also
    # require charged specie, even it is not necessary
    specie = Specie.from_string(args.specie)
    da = DiffusivityAnalyzer.from_files(vasprun_dirs, str(specie.element), step_skip=args.step_skip,
                                        ncores=args.ncores,
                                        time_intervals_number=args.time_intervals_number,
                                        spec_dict={'lower_bound': args.lower_bound_in_a_square \
                                                                  * args.site_distance \
                                                                  * args.site_distance,
                                                   'upper_bound': args.upper_bound,
                                                   'minimum_msd_diff': args.minimum_msd_diff_in_a_square \
                                                                       * args.site_distance \
                                                                       * args.site_distance,
                                                   }
                                        )
    ea = ErrorAnalysisFromDiffusivityAnalyzer(da,
                                              site_distance=args.site_distance)
    if da.diffusivity > 0:  # The linear fitting succeed
        summary_info = ea.get_summary_dict(oxidized_specie=args.specie)
    # if the msd profile of the MD doesn't fulfill the fitting requirements,
    # da.diffusivity is set  to be negative
    else:
        summary_info = {
            "diffusion result":
            "MSD calculated from MD doesn't fulfill the fitting requirement",
            "max msd": max(da.msd),
            'msd': da.msd,
            'dt': da.dt,
            'msd_component': da.msd_component
        }
        print("Output msd-dt into {}K_msd-dt.csv".format(int(da.temperature)))
        args.msd_file = "{}K_msd-dt.csv".format(int(da.temperature))

    # output
    print("=" * 40)
    print("Used vasprun.xml files")
    print("Start run: {}, end run: {}".format(vasprun_dirs[0],
                                              vasprun_dirs[-1]))
    print("=" * 40)

    # results table
    header_result = ("Parameter", "Value")
    result_table = PrettyTable(header_result)
    result_table.align["Parameter"] = "l"
    for k, v in summary_info.items():
        if k not in ['msd', 'dt', 'msd_component']:
            result_table.add_row([k, str(v)])
    result_table.add_row(['composition', str(da.structure.composition)])
    print("Results table: ")
    print("Diffusivity unit: cm^2/s, Conductivity unit: mS/cm")
    print(result_table.get_string(sortby='Parameter'))
    # print(citing_info)
    # whether output msd
    if args.msd_file:
        print("Output msd-dt into file: {}".format(args.msd_file))
        with open(args.msd_file, 'w') as fp:
            w_csv = csv.writer(fp, delimiter=',')
            data = [
                summary_info['dt'], summary_info['msd'],
                summary_info['msd_component'][0],
                summary_info['msd_component'][1],
                summary_info['msd_component'][2]
            ]
            w_csv.writerows([[
                "dt (fs)", "msd (A^2)", "msd_component_0", "msd_component_1",
                "msd_component_2"
            ]])
            w_csv.writerows(zip(*data))
コード例 #23
0
    def oxi_state_guesses(self,
                          oxi_states_override=None,
                          target_charge=0,
                          all_oxi_states=False,
                          max_sites=None):
        """
        Checks if the composition is charge-balanced and returns back all
        charge-balanced oxidation state combinations. Composition must have
        integer values. Note that more num_atoms in the composition gives
        more degrees of freedom. e.g., if possible oxidation states of
        element X are [2,4] and Y are [-3], then XY is not charge balanced
        but X2Y2 is. Results are returned from most to least probable based
        on ICSD statistics. Use max_sites to improve performance if needed.

        Args:
            oxi_states_override (dict): dict of str->list to override an
                element's common oxidation states, e.g. {"V": [2,3,4,5]}
            target_charge (int): the desired total charge on the structure.
                Default is 0 signifying charge balance.
            all_oxi_states (bool): if True, an element defaults to
                all oxidation states in pymatgen Element.icsd_oxidation_states.
                Otherwise, default is Element.common_oxidation_states. Note
                that the full oxidation state list is *very* inclusive and
                can produce nonsensical results.
            max_sites (int): if possible, will reduce Compositions to at most
                this many many sites to speed up oxidation state guesses. Set
                to -1 to just reduce fully.

        Returns:
            A list of dicts - each dict reports an element symbol and average
                oxidation state across all sites in that composition. If the
                composition is not charge balanced, an empty list is returned.
        """

        comp = self.copy()

        # reduce Composition if necessary
        if max_sites == -1:
            comp = self.reduced_composition

        elif max_sites and comp.num_atoms > max_sites:
            reduced_comp, reduced_factor = self.\
                get_reduced_composition_and_factor()
            if reduced_factor > 1:
                reduced_comp *= max(1, int(max_sites / reduced_comp.num_atoms))
                comp = reduced_comp  # as close to max_sites as possible
            if comp.num_atoms > max_sites:
                raise ValueError("Composition {} cannot accommodate max_sites "
                                 "setting!".format(comp))

        # Load prior probabilities of oxidation states, used to rank solutions
        if not Composition.oxi_prob:
            module_dir = os.path.join(
                os.path.dirname(os.path.abspath(__file__)))
            all_data = loadfn(
                os.path.join(module_dir, "..", "analysis", "icsd_bv.yaml"))
            Composition.oxi_prob = {
                Specie.from_string(sp): data
                for sp, data in all_data["occurrence"].items()
            }

        oxi_states_override = oxi_states_override or {}

        # assert: Composition only has integer amounts
        if not all(amt == int(amt) for amt in comp.values()):
            raise ValueError("Charge balance analysis requires integer "
                             "values in Composition!")

        # for each element, determine all possible sum of oxidations
        # (taking into account nsites for that particular element)
        el_amt = comp.get_el_amt_dict()
        els = el_amt.keys()
        el_sums = []  # matrix: dim1= el_idx, dim2=possible sums
        el_sum_scores = defaultdict(set)  # dict of el_idx, sum -> score
        for idx, el in enumerate(els):
            el_sum_scores[idx] = {}
            el_sums.append([])
            if oxi_states_override.get(el):
                oxids = oxi_states_override[el]
            elif all_oxi_states:
                oxids = Element(el).oxidation_states
            else:
                oxids = Element(el).icsd_oxidation_states or \
                        Element(el).oxidation_states

            # get all possible combinations of oxidation states
            # and sum each combination
            for oxid_combo in combinations_with_replacement(
                    oxids, int(el_amt[el])):
                if sum(oxid_combo) not in el_sums[idx]:
                    el_sums[idx].append(sum(oxid_combo))
                    score = sum([
                        Composition.oxi_prob.get(Specie(el, o), 0)
                        for o in oxid_combo
                    ])  # how probable is this combo?
                    el_sum_scores[idx][sum(oxid_combo)] = max(
                        el_sum_scores[idx].get(sum(oxid_combo), 0), score)

        all_sols = []  # will contain all solutions
        all_scores = []  # will contain a score for each solution
        for x in product(*el_sums):
            # each x is a trial of one possible oxidation sum for each element
            if sum(x) == target_charge:  # charge balance condition
                el_sum_sol = dict(zip(els, x))  # element->oxid_sum
                # normalize oxid_sum by amount to get avg oxid state
                sol = {el: v / el_amt[el] for el, v in el_sum_sol.items()}
                all_sols.append(
                    sol)  # add the solution to the list of solutions

                # determine the score for this solution
                score = 0
                for idx, v in enumerate(x):
                    score += el_sum_scores[idx][v]
                all_scores.append(score)

        # sort the solutions by highest to lowest score
        all_sols = [
            x for (y, x) in sorted(zip(all_scores, all_sols),
                                   key=lambda pair: pair[0],
                                   reverse=True)
        ]
        return all_sols
コード例 #24
0
                           "N", "P", "As", "Sb",
                           "O", "S", "Se", "Te",
                           "F", "Cl", "Br", "I"])

module_dir = os.path.dirname(os.path.abspath(__file__))

#Read in BV parameters.
BV_PARAMS = {}
with open(os.path.join(module_dir, "bvparam_1991.json"), "r") as f:
    for k, v in json.load(f).items():
        BV_PARAMS[Element(k)] = v

#Read in json containing data-mined ICSD BV data.
with open(os.path.join(module_dir, "icsd_bv.json"), "r") as f:
    all_data = json.load(f)
    ICSD_BV_DATA = {Specie.from_string(sp): data
                    for sp, data in all_data["bvsum"].items()}
    PRIOR_PROB = {Specie.from_string(sp): data
                  for sp, data in all_data["occurrence"].items()}


def calculate_bv_sum(site, nn_list, scale_factor=1.0):
    """
    Calculates the BV sum of a site.

    Args:
        site:
            The site
        nn_list:
            List of nearest neighbors in the format [(nn_site, dist), ...].
        anion_el:
コード例 #25
0
    def _get_oxid_state_guesses(self, all_oxi_states, max_sites,
                                oxi_states_override, target_charge):
        """
        Utility operation for guessing oxidation states.

        See `oxi_state_guesses` for full details. This operation does the calculation
        of the most likely oxidation states

        Args:
            oxi_states_override (dict): dict of str->list to override an
                element's common oxidation states, e.g. {"V": [2,3,4,5]}
            target_charge (int): the desired total charge on the structure.
                Default is 0 signifying charge balance.
            all_oxi_states (bool): if True, an element defaults to
                all oxidation states in pymatgen Element.icsd_oxidation_states.
                Otherwise, default is Element.common_oxidation_states. Note
                that the full oxidation state list is *very* inclusive and
                can produce nonsensical results.
            max_sites (int): if possible, will reduce Compositions to at most
                this many many sites to speed up oxidation state guesses. Set
                to -1 to just reduce fully.
        Returns:
            A list of dicts - each dict reports an element symbol and average
                oxidation state across all sites in that composition. If the
                composition is not charge balanced, an empty list is returned.
            A list of dicts - each dict maps the element symbol to a list of
                oxidation states for each site of that element. For example, Fe3O4 could
                return a list of [2,2,2,3,3,3] for the oxidation states of If the composition
                is

            """
        comp = self.copy()
        # reduce Composition if necessary
        if max_sites == -1:
            comp = self.reduced_composition

        elif max_sites and comp.num_atoms > max_sites:
            reduced_comp, reduced_factor = self. \
                get_reduced_composition_and_factor()
            if reduced_factor > 1:
                reduced_comp *= max(1, int(max_sites / reduced_comp.num_atoms))
                comp = reduced_comp  # as close to max_sites as possible
            if comp.num_atoms > max_sites:
                raise ValueError("Composition {} cannot accommodate max_sites "
                                 "setting!".format(comp))

        # Load prior probabilities of oxidation states, used to rank solutions
        if not Composition.oxi_prob:
            module_dir = os.path.join(
                os.path.dirname(os.path.abspath(__file__)))
            all_data = loadfn(
                os.path.join(module_dir, "..", "analysis", "icsd_bv.yaml"))
            Composition.oxi_prob = {
                Specie.from_string(sp): data
                for sp, data in all_data["occurrence"].items()
            }
        oxi_states_override = oxi_states_override or {}
        # assert: Composition only has integer amounts
        if not all(amt == int(amt) for amt in comp.values()):
            raise ValueError("Charge balance analysis requires integer "
                             "values in Composition!")

        # for each element, determine all possible sum of oxidations
        # (taking into account nsites for that particular element)
        el_amt = comp.get_el_amt_dict()
        els = el_amt.keys()
        el_sums = []  # matrix: dim1= el_idx, dim2=possible sums
        el_sum_scores = defaultdict(set)  # dict of el_idx, sum -> score
        el_best_oxid_combo = {
        }  # dict of el_idx, sum -> oxid combo with best score
        for idx, el in enumerate(els):
            el_sum_scores[idx] = {}
            el_best_oxid_combo[idx] = {}
            el_sums.append([])
            if oxi_states_override.get(el):
                oxids = oxi_states_override[el]
            elif all_oxi_states:
                oxids = Element(el).oxidation_states
            else:
                oxids = Element(el).icsd_oxidation_states or \
                        Element(el).oxidation_states

            # get all possible combinations of oxidation states
            # and sum each combination
            for oxid_combo in combinations_with_replacement(
                    oxids, int(el_amt[el])):

                # List this sum as a possible option
                oxid_sum = sum(oxid_combo)
                if oxid_sum not in el_sums[idx]:
                    el_sums[idx].append(oxid_sum)

                # Determine how probable is this combo?
                score = sum([
                    Composition.oxi_prob.get(Specie(el, o), 0)
                    for o in oxid_combo
                ])

                # If it is the most probable combo for a certain sum,
                #   store the combination
                if oxid_sum not in el_sum_scores[
                        idx] or score > el_sum_scores[idx].get(oxid_sum, 0):
                    el_sum_scores[idx][oxid_sum] = score
                    el_best_oxid_combo[idx][oxid_sum] = oxid_combo

        # Determine which combination of oxidation states for each element
        #    is the most probable
        all_sols = []  # will contain all solutions
        all_oxid_combo = [
        ]  # will contain the best combination of oxidation states for each site
        all_scores = []  # will contain a score for each solution
        for x in product(*el_sums):
            # each x is a trial of one possible oxidation sum for each element
            if sum(x) == target_charge:  # charge balance condition
                el_sum_sol = dict(zip(els, x))  # element->oxid_sum
                # normalize oxid_sum by amount to get avg oxid state
                sol = {el: v / el_amt[el] for el, v in el_sum_sol.items()}
                all_sols.append(
                    sol)  # add the solution to the list of solutions

                # determine the score for this solution
                score = 0
                for idx, v in enumerate(x):
                    score += el_sum_scores[idx][v]
                all_scores.append(score)

                # collect the combination of oxidation states for each site
                all_oxid_combo.append(
                    dict((e, el_best_oxid_combo[idx][v])
                         for idx, (e, v) in enumerate(zip(els, x))))

        # sort the solutions by highest to lowest score
        if len(all_scores) > 0:
            all_sols, all_oxid_combo = zip(
                *[(y, x)
                  for (z, y,
                       x) in sorted(zip(all_scores, all_sols, all_oxid_combo),
                                    key=lambda pair: pair[0],
                                    reverse=True)])
        return all_sols, all_oxid_combo