コード例 #1
0
open_element_all = Element("O")
mpr = MPRester("######")

mp_entries = mpr.get_entries_in_chemsys(['Li', 'Ca', 'O'],
                                        compatible_only=True)

pd = PhaseDiagramOpenAnalyzer(mp_entries[0], open_element_all)

entries.extend(mp_entries)

# Process entries using the MaterialsProjectCompatibility
compat = MaterialsProjectCompatibility()
entries = compat.process_entries(entries)
#explanation_output = open("explain.txt",'w')
entries_output = open("entries.txt", 'w')
compat.explain(entries[0])
#print(entries, file=entries_output)

# pd2 = PhaseDiagram(entries)

chempot_list = pd2.get_transition_chempots(open_element_all)
pd_index = 0

# cria um dicionário
chempot_range_of_each_phase = {}
for particular_phase_diagram in all_phase_diagrams:
    # recebe o potencial químico
    chempot = chempot_list[pd_index]
    if pd_index is not number_of_phase_diagrams - 1:
        next_chempot = chempot_list[pd_index + 1]
    else:
コード例 #2
0
    def get_phase_diagram_data(self):
        """
        Returns grand potential phase diagram data to external plot
        Assumes openelement specific element equals None
        :return: Data to external plot
        """
        open_elements_specific = None
        open_element_all = Element(self.open_element)
        mpr = MPRester(settings.apiKey)

        drone = VaspToComputedEntryDrone()
        queen = BorgQueen(drone, rootpath=".")
        entries = queen.get_data()

        # Get data to make phase diagram
        mp_entries = mpr.get_entries_in_chemsys(self.system,
                                                compatible_only=True)

        entries.extend(mp_entries)

        compat = MaterialsProjectCompatibility()
        entries = compat.process_entries(entries)
        #explanation_output = open("explain.txt",'w')
        #entries_output = open("entries.txt", 'w')
        compat.explain(entries[0])
        #print(entries, file=entries_output)

        if open_elements_specific:
            gcpd = GrandPotentialPhaseDiagram(entries, open_elements_specific)
            self.plot_phase_diagram(gcpd, False)
            self.analyze_phase_diagram(gcpd)

        if open_element_all:
            pd = PhaseDiagram(entries)
            chempots = pd.get_transition_chempots(open_element_all)
            # print(chempots)
            #all_gcpds = list()
            toplot = []
            # dic = {}
            for idx in range(len(chempots)):
                if idx == len(chempots) - 1:
                    avgchempot = chempots[idx] - 0.1
                else:
                    avgchempot = 0.5 * (chempots[idx] + chempots[idx + 1])
                gcpd = GrandPotentialPhaseDiagram(
                    entries, {open_element_all: avgchempot}, pd.elements)

                # min_chempot = None if idx == len(
                #     chempots) - 1 else chempots[idx + 1]
                # max_chempot = chempots[idx]
                #gcpd = GrandPotentialPhaseDiagram(entries, {open_element_all: max_chempot}, pd.elements)

                toplot.append(self.get_grand_potential_phase_diagram(gcpd))
                # toplot.append(max_chempot)

                #self.plot_phase_diagram(gcpd, False)
                #print({open_element_all: max_chempot})

        all_phase_diagrams = toplot
        # print(all_phase_diagrams)

        number_of_phase_diagrams = len(all_phase_diagrams)

        #pd3 = PhaseDiagram(entries)

        chempot_list = pd.get_transition_chempots(open_element_all)
        pd_index = 0

        chempots_range_of_each_phase = {}
        for particular_phase_diagram in all_phase_diagrams:
            chempot = chempot_list[pd_index]

            if pd_index is not number_of_phase_diagrams - 1:
                next_chempot = chempot_list[pd_index + 1]
            else:
                next_chempot = chempot_list[pd_index] - 2.0
            chempot_range = [chempot, next_chempot]

            phases_list = particular_phase_diagram[0]

            for phase in phases_list:
                if phase in chempots_range_of_each_phase.keys():
                    chempots_range_of_each_phase[phase][1] = next_chempot.copy(
                    )
                else:
                    chempots_range_of_each_phase[phase] = chempot_range.copy()

            pd_index = pd_index + 1

        return chempots_range_of_each_phase
コード例 #3
0
    def get_phase_diagram_data(self):
        """
        Returns grand potential phase diagram data to external plot
        Assumes openelement specific element equals None
        :return: Data to external plot
        """
        open_elements_specific = None
        open_element_all = Element(self.open_element)
        mpr = MPRester("key")

        # import do dados dos arquivos tipo vasp
        drone = VaspToComputedEntryDrone()
        queen = BorgQueen(drone, rootpath=".")
        entries = queen.get_data()

        # Get data to make phase diagram
        mp_entries = mpr.get_entries_in_chemsys(self.system,
                                                compatible_only=True)

        entries.extend(mp_entries)

        compat = MaterialsProjectCompatibility()
        entries = compat.process_entries(entries)
        #explanation_output = open("explain.txt",'w')
        entries_output = open("entries.txt", 'w')
        compat.explain(entries[0])
        print(entries, file=entries_output)
        #print(entries)

        if open_elements_specific:
            gcpd = GrandPotentialPhaseDiagram(entries, open_elements_specific)
            self.plot_phase_diagram(gcpd, False)
            self.analyze_phase_diagram(gcpd)

        if open_element_all:
            pd = PhaseDiagram(entries)
            chempots = pd.get_transition_chempots(open_element_all)
            #print(chempots)
            #all_gcpds = list()
            toplot = []
            # dic = {}
            for idx in range(len(chempots)):
                if idx == len(chempots) - 1:
                    avgchempot = chempots[idx] - 0.1
                else:
                    avgchempot = 0.5 * (chempots[idx] + chempots[idx + 1])
                gcpd = GrandPotentialPhaseDiagram(
                    entries, {open_element_all: avgchempot}, pd.elements)
                # toplot.append(self.get_grand_potential_phase_diagram(gcpd))

                min_chempot = None if idx == len(chempots) - 1 else chempots[
                    idx + 1]
                max_chempot = chempots[idx]
                #gcpd = GrandPotentialPhaseDiagram(entries, {open_element_all: max_chempot}, pd.elements)

                toplot.append(self.get_grand_potential_phase_diagram(gcpd))
                #toplot.append(max_chempot)

                #self.plot_phase_diagram(gcpd, False)
                #print({open_element_all: max_chempot})

            # Data to plot phase diagram
            return toplot
コード例 #4
0
import re
from pymatgen.entries.computed_entries import ComputedEntry
from pymatgen.entries.compatibility import MaterialsProjectCompatibility
from pymatgen import MPRester  #REST API的适配器
#To do our testing, let's use the MPRester to get a sample computed entry from the Materials Project.
m = MPRester("S3lw1QomLO8bTiT7")  #将API 秘钥输入适配器中,并且初始化适配器
entries = m.get_entries("LiFePO4")
entry = entries[0]
compat = MaterialsProjectCompatibility(
)  #实现了GGA / GGA + U混合方案,允许混合条目,这应仅用于使用MaterialsProject参数进行VASP计算
compat.explain(entry)  #打印显示出entry中的信息