コード例 #1
0
ファイル: analyzer.py プロジェクト: xiaogh98/pymatgen
    def _in_facet(self, facet, entry):
        """
        Checks if a Pourbaix Entry is in a facet.

        Args:
            facet: facet to test.
            entry: Pourbaix Entry to test.
        """
        dim = len(self._keys)
        if dim > 1:
            coords = [np.array(self._pd.qhull_data[facet[i]][0:dim - 1])
                      for i in range(len(facet))]
            simplex = Simplex(coords)
            comp_point = [entry.npH, entry.nPhi]
            return simplex.in_simplex(comp_point,
                                      PourbaixAnalyzer.numerical_tol)
        else:
            return True
コード例 #2
0
    def _get_3d_domain_simplexes_and_ann_loc(
        points_3d: np.ndarray, ) -> Tuple[List[Simplex], np.ndarray]:
        """Returns a list of Simplex objects and coordinates of annotation for one
        domain in a 3-d chemical potential diagram. Uses PCA to project domain
        into 2-dimensional space so that ConvexHull can be used to identify the
        bounding polygon"""
        points_2d, v, w = simple_pca(points_3d, k=2)
        domain = ConvexHull(points_2d)
        centroid_2d = get_centroid_2d(points_2d[domain.vertices])
        ann_loc = centroid_2d @ w.T + np.mean(points_3d.T, axis=1)

        simplexes = [
            Simplex(points_3d[indices]) for indices in domain.simplices
        ]

        return simplexes, ann_loc
コード例 #3
0
    def _get_3d_formula_lines(
        draw_domains: Dict[str, np.ndarray],
        formula_colors: Optional[List[str]],
    ) -> List[Scatter3d]:
        """Returns a list of Scatter3d objects defining the bounding polyhedra"""
        if formula_colors is None:
            formula_colors = px.colors.qualitative.Dark2

        lines = []
        for idx, (formula, coords) in enumerate(draw_domains.items()):
            points_3d = coords[:, :3]
            domain = ConvexHull(points_3d[:, :-1])
            simplexes = [
                Simplex(points_3d[indices]) for indices in domain.simplices
            ]

            x, y, z = [], [], []
            for s in simplexes:
                x.extend(s.coords[:, 0].tolist() + [None])
                y.extend(s.coords[:, 1].tolist() + [None])
                z.extend(s.coords[:, 2].tolist() + [None])

            line = Scatter3d(
                x=x,
                y=y,
                z=z,
                mode="lines",
                line={
                    "width": 8,
                    "color": formula_colors[idx]
                },
                opacity=1.0,
                name=f"{formula} (lines)",
            )
            lines.append(line)
        return lines
コード例 #4
0
ファイル: pourbaix_diagram.py プロジェクト: yiwang62/pymatgen
    def get_pourbaix_domains(pourbaix_entries, limits=None):
        """
        Returns a set of pourbaix stable domains (i. e. polygons) in
        pH-V space from a list of pourbaix_entries

        This function works by using scipy's HalfspaceIntersection
        function to construct all of the 2-D polygons that form the
        boundaries of the planes corresponding to individual entry
        gibbs free energies as a function of pH and V. Hyperplanes
        of the form a*pH + b*V + 1 - g(0, 0) are constructed and
        supplied to HalfspaceIntersection, which then finds the
        boundaries of each pourbaix region using the intersection
        points.

        Args:
            pourbaix_entries ([PourbaixEntry]): Pourbaix entries
                with which to construct stable pourbaix domains
            limits ([[float]]): limits in which to do the pourbaix
                analysis

        Returns:
            Returns a dict of the form {entry: [boundary_points]}.
            The list of boundary points are the sides of the N-1
            dim polytope bounding the allowable ph-V range of each entry.
        """
        if limits is None:
            limits = [[-2, 16], [-4, 4]]

        # Get hyperplanes
        hyperplanes = [
            np.array([-PREFAC * entry.npH, -entry.nPhi, 0, -entry.energy]) *
            entry.normalization_factor for entry in pourbaix_entries
        ]
        hyperplanes = np.array(hyperplanes)
        hyperplanes[:, 2] = 1

        max_contribs = np.max(np.abs(hyperplanes), axis=0)
        g_max = np.dot(-max_contribs, [limits[0][1], limits[1][1], 0, 1])

        # Add border hyperplanes and generate HalfspaceIntersection
        border_hyperplanes = [
            [-1, 0, 0, limits[0][0]],
            [1, 0, 0, -limits[0][1]],
            [0, -1, 0, limits[1][0]],
            [0, 1, 0, -limits[1][1]],
            [0, 0, -1, 2 * g_max],
        ]
        hs_hyperplanes = np.vstack([hyperplanes, border_hyperplanes])
        interior_point = np.average(limits, axis=1).tolist() + [g_max]
        hs_int = HalfspaceIntersection(hs_hyperplanes,
                                       np.array(interior_point))

        # organize the boundary points by entry
        pourbaix_domains = {entry: [] for entry in pourbaix_entries}
        for intersection, facet in zip(hs_int.intersections,
                                       hs_int.dual_facets):
            for v in facet:
                if v < len(pourbaix_entries):
                    this_entry = pourbaix_entries[v]
                    pourbaix_domains[this_entry].append(intersection)

        # Remove entries with no pourbaix region
        pourbaix_domains = {k: v for k, v in pourbaix_domains.items() if v}
        pourbaix_domain_vertices = {}

        for entry, points in pourbaix_domains.items():
            points = np.array(points)[:, :2]
            # Initial sort to ensure consistency
            points = points[np.lexsort(np.transpose(points))]
            center = np.average(points, axis=0)
            points_centered = points - center

            # Sort points by cross product of centered points,
            # isn't strictly necessary but useful for plotting tools
            points_centered = sorted(
                points_centered,
                key=cmp_to_key(lambda x, y: x[0] * y[1] - x[1] * y[0]))
            points = points_centered + center

            # Create simplices corresponding to pourbaix boundary
            simplices = [
                Simplex(points[indices])
                for indices in ConvexHull(points).simplices
            ]
            pourbaix_domains[entry] = simplices
            pourbaix_domain_vertices[entry] = points

        return pourbaix_domains, pourbaix_domain_vertices
コード例 #5
0
    def get_chempot_range_map(self, limits=[[-2, 16], [-4, 4]]):
        """
        Returns a chemical potential range map for each stable entry.

        This function works by using scipy's HalfspaceIntersection
        function to construct all of the 2-D polygons that form the
        boundaries of the planes corresponding to individual entry
        gibbs free energies as a function of pH and V. Hyperplanes
        of the form a*pH + b*V + 1 - g(0, 0) are constructed and
        supplied to HalfspaceIntersection, which then finds the
        boundaries of each pourbaix region using the intersection
        points.

        Args:
            limits ([[float]]): limits in which to do the pourbaix
                analysis

        Returns:
            Returns a dict of the form {entry: [boundary_points]}. 
            The list of boundary points are the sides of the N-1 
            dim polytope bounding the allowable ph-V range of each entry.
        """
        tol = PourbaixAnalyzer.numerical_tol
        all_chempots = []
        facets = self._pd.facets
        for facet in facets:
            chempots = self.get_facet_chempots(facet)
            chempots["H+"] /= -0.0591
            chempots["V"] = -chempots["V"]
            chempots["1"] = chempots["1"]
            all_chempots.append([chempots[el] for el in self._keys])

        # Get hyperplanes corresponding to G as function of pH and V
        halfspaces = []
        qhull_data = np.array(self._pd._qhull_data)
        stable_entries = self._pd.stable_entries
        stable_indices = [
            self._pd.qhull_entries.index(e) for e in stable_entries
        ]
        qhull_data = np.array(self._pd._qhull_data)
        hyperplanes = np.vstack([
            -0.0591 * qhull_data[:, 0], -qhull_data[:, 1],
            np.ones(len(qhull_data)), -qhull_data[:, 2]
        ])
        hyperplanes = np.transpose(hyperplanes)
        max_contribs = np.max(np.abs(hyperplanes), axis=0)
        g_max = np.dot(-max_contribs, [limits[0][1], limits[1][1], 0, 1])

        # Add border hyperplanes and generate HalfspaceIntersection
        border_hyperplanes = [[-1, 0, 0,
                               limits[0][0]], [1, 0, 0, -limits[0][1]],
                              [0, -1, 0, limits[1][0]],
                              [0, 1, 0, -limits[1][1]], [0, 0, -1, 2 * g_max]]
        hs_hyperplanes = np.vstack(
            [hyperplanes[stable_indices], border_hyperplanes])
        interior_point = np.average(limits, axis=1).tolist() + [g_max]
        hs_int = HalfspaceIntersection(hs_hyperplanes,
                                       np.array(interior_point))

        # organize the boundary points by entry
        pourbaix_domains = {entry: [] for entry in stable_entries}
        for intersection, facet in zip(hs_int.intersections,
                                       hs_int.dual_facets):
            for v in facet:
                if v < len(stable_entries):
                    pourbaix_domains[stable_entries[v]].append(intersection)

        # Remove entries with no pourbaix region
        pourbaix_domains = {k: v for k, v in pourbaix_domains.items() if v}
        pourbaix_domain_vertices = {}

        # Post-process boundary points, sorting isn't strictly necessary
        # but useful for some plotting tools (e.g. highcharts)
        for entry, points in pourbaix_domains.items():
            points = np.array(points)[:, :2]
            center = np.average(points, axis=0)
            points_centered = points - center

            # Sort points by cross product of centered points,
            # then roll by min sum to to ensure consistency
            point_comparator = lambda x, y: x[0] * y[1] - x[1] * y[0]
            points_centered = sorted(points_centered,
                                     key=cmp_to_key(point_comparator))
            points = points_centered + center
            shift = -np.lexsort(np.transpose(points))[0]
            points = np.roll(points, shift, axis=0)

            # Create simplices corresponding to pourbaix boundary
            simplices = [
                Simplex(points[indices])
                for indices in ConvexHull(points).simplices
            ]
            pourbaix_domains[entry] = simplices
            pourbaix_domain_vertices[entry] = points

        self.pourbaix_domains = pourbaix_domains
        self.pourbaix_domain_vertices = pourbaix_domain_vertices
        return pourbaix_domains