コード例 #1
0
ファイル: labeled_matrix.py プロジェクト: a-robu/infopy
 def __init__(self, m, row_symbols=None, column_symbols=None):
     ''' 
     m will be transformed into a matrix using 'pymatrix.matrix'.
     row_symbols and column_symbols can be of any sequence type.
     '''
     self._matrix = (m if isinstance(m, pymatrix.Matrix)
         else pymatrix.matrix(m))
     self.row_symbols = (row_symbols if row_symbols
         else range(self._matrix.numcols))
     self.column_symbols = (column_symbols if column_symbols
         else range(self._matrix.numrows))
コード例 #2
0
ファイル: qz.py プロジェクト: JohnnyJiaJia/CodeCraft-1
def quZao2(arr,input_nos):
    train_data=[]
    M = pymatrix.matrix(arr)
    M = M.transpose()
    for input_no in input_nos:
        temp = M.rowAt(input_no+1)
        #print(input_no,temp,type(temp))
        temp = quZao(temp)
        #print(temp)
        train_data.append(temp)
    #print(M)
    return train_data
コード例 #3
0
def quZao2(arr, input_nos):
    train_data = {}
    M = pymatrix.matrix(arr)

    for input_no in input_nos:
        temp = M.rowAt(input_no + 1)
        #print(input_no,temp,type(temp))
        temp = fluth_data(temp)
        #print(temp)
        train_data[input_no] = temp
    #print(M)
    return train_data
コード例 #4
0
def mlp(input):
    hiddenNeuron = 4
    learningRate = 0.6
    epoch = 3000
    maxMSE = 10 ^ -6

    #define W1
    W1 = matrix([])
    for i in range(0, input):
        temp = []
        for j in range(0, hiddenNeuron):
            temp.append(1)
        W1.append(temp)

    return W1
コード例 #5
0
ファイル: GM11.py プロジェクト: JohnnyJiaJia/CodeCraft-1
def yuce(N, train_data):
    #train_data = pymatrix.matrix(train_data_list)
    #print(train_data)
    # size[0]是行数 size[1]是列数
    seq_len, flavor_num = train_data.shape()
    #print(seq_len,flavor_num)
    res = []
    for i in range(1, flavor_num + 1, 1):
        #print(u"===规格"+str(i)+"===")
        seq_fi = train_data.colAt(i)
        #print(u"原始序列"+str(seq_fi))
        seq_fi = cumsum(seq_fi)
        #print(u"累加序列"+str(seq_fi))
        if (seq_fi[-1] == 0):
            res.append(0)
            print(res)
            continue
        #print(seq_fi)
        z = [[0]] * (seq_len - 1)
        #print(u"白化之前:"+str(z))
        for j in range(0, seq_len - 1, 1):
            z[j] = [0.5 * (float(seq_fi[j]) + float(seq_fi[j + 1]))]
        #print(u"白化背景之后: "+str(len(z))+str(z))
        z = pymatrix.matrix(z)
        print("z=" + str(z))
        z = z.numberSubMatrix(0)
        print(u"-z=" + str(z))
        B = [[1]] * (seq_len - 1)
        B = pymatrix.matrix(B)
        B = z.heBing(B)
        #print(u"合并矩阵之后:"+ str(B))

        u = B.transpose() * B
        #print(u"B的转置 "+str(B.transpose()))
        #print(u"B原来 "+str(B))
        u = u.inverse()
        u = u * B.transpose()
        #print(u)
        #print(train_data)
        #print(u"子矩阵 "+str(train_data.subMatrix(2,seq_len,i,i)))
        u = u * (train_data.subMatrix(2, seq_len, i, i))
        #print("u= "+str(u))
        u1 = u[0][0]
        u2 = u[1][0]
        #print(u1,u2)
        left = train_data[0][i - 1] - u2 / u1
        #print("left= "+str(left))
        #print("u1= "+str(u1))
        right = u2 / u1

        forecast1 = []
        for t in range(seq_len - 1, seq_len + N, 1):
            forecast1.append(t)
        for i in range(0, len(forecast1), 1):
            forecast1[i] = (-u1) * forecast1[i]
        for i in range(0, len(forecast1), 1):
            forecast1[i] = math.exp(forecast1[i])
        for i in range(0, len(forecast1), 1):
            forecast1[i] = left * forecast1[i]
        for i in range(0, len(forecast1), 1):
            forecast1[i] = forecast1[i] + right

        #print(forecast1[-1]-forecast1[0])
        print(forecast1)
        rrr = abs(round(forecast1[-1] - forecast1[0]))
        if (rrr > 40):
            rrr = 40
        res.append(int(rrr))
        print(res)
        #exchange=[]
        #for i in range(1,len(forecast1),1):
        #    exchange.append(forecast1[i]-forecast1[i-1])
    return res
コード例 #6
0
ファイル: main.py プロジェクト: MFuell2/LIDAR_slam
# Pyboard hardware I2C
i2c = machine.I2C(1)

time.sleep(2)
imu = BNO055(i2c)
time.sleep(2)
calibrated = False


start_time = time.ticks_ms()/1000
initial_x = imu.lin_acc()[0]
initial_y = imu.lin_acc()[1]
initial_z = imu.lin_acc()[2]

x = pym.matrix([[initial_x],[0],[0],\
                [initial_y],[0],[0],\
                [initial_z],[0],[0]])

KF = KalmanFilter(x)

pos = Pos(start_time, initial_x, initial_y)



iterations = 1000
i = 0
while i<iterations:
    time.sleep(.01)
    update_time = time.ticks_ms()/1000
    acc_x = imu.lin_acc()[0]
    acc_y = imu.lin_acc()[1]
コード例 #7
0
ファイル: labeled_matrix.py プロジェクト: a-robu/infopy
 def test_auto_matrix(self):
     assert M(pymatrix.matrix('0')) == M('0')
コード例 #8
0
import pymatrix

arr = [[1, 2, 3], [2, 3, 4], [123, 12, 124], [12, 34, 22], [123132, 1234, 43]]

mm = pymatrix.matrix(arr)

for row in mm.rows():
    print(row)

print(mm)
print("==================")
print(mm.subMatrix(2, 3, 1, 3))

arr = [
    0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1, 0, 0, 1, 1, 0
]
print(len(arr))

m1 = [[1.1, 2.5], [3, 4]]
m1 = pymatrix.matrix(m1)
mm = m1.inverse()
print(mm)
print(mm * m1)
m2 = [[5, 6], [7, 8]]
m2 = pymatrix.matrix(m2)
m3 = m1 * m2
print(m3)
コード例 #9
0
def yuce(N,train_data):
    #train_data = pymatrix.matrix(train_data_list)
    #print(train_data)
    # size[0]是行数 size[1]是列数
    seq_len= len(train_data)
    #print(seq_len,flavor_num)
    # train_data是预测结果,数组的数组,第i个数组是规格i个预测结果
    # train_data = []
    old_train_data = train_data[:]
    print("oooooooooooooooooo",train_data)
    train_data = cumsum(train_data)
    print("SSSSSSSSSSSSS",train_data)
    res = 0   
    if(train_data[-1]==0):
        return 0
    #print(train_data)
    z = [[0]]*(seq_len-1)
    #print(u"白化之前:"+str(z))
    for j in range(0,seq_len-1,1):
        z[j] = [0.5*(train_data[j]+train_data[j+1])]
    #print(u"白化背景之后: "+str(len(z))+str(z))
    z = pymatrix.matrix(z)
    z = z.numberSubMatrix(0)
    #print(u"-z="+str(z))
    B = [[1]]*(seq_len-1)
    B = pymatrix.matrix(B)
    B = z.heBing(B)
    #print(u"合并矩阵之后:"+ str(B))
    
    u = B.transpose()*B
    #print(u"B的转置 "+str(B.transpose()))
    u = u.inverse()
    u = u * B.transpose()
    #print(u)
    #print(train_data)
    #print(u"子矩阵 "+str(train_data.subMatrix(2,seq_len,i,i)))
    # u = u * (train_data.subMatrix(2,seq_len,i,i))
    # u = u * train_data[1:seq_len]
    # print("u= "+str(u))
    # u1 = u[0][0]
    # u2 = u[1][0]
    sub_matrix = old_train_data[1:seq_len]

    u1 = sum(list(map(lambda x:x[0] *x[1],zip(u[0],sub_matrix))))
    u2 = sum(list(map(lambda x:x[0] *x[1],zip(u[1],sub_matrix))))
    print(u1,u2)
    left = train_data[0]- u2/u1
    #print("left= "+str(left))
    #print("u1= "+str(u1))
    right = u2/u1
    
    forecast1 = []
    # for t in range(seq_len-1,seq_len+N,1):
    for t in range(0,seq_len):
        forecast1.append(t)
    for i in range(0,len(forecast1),1):
        forecast1[i] = (-u1)*forecast1[i]
    for i in range(0,len(forecast1),1):
        forecast1[i] = math.exp(forecast1[i])
    for i in range(0,len(forecast1),1):
        forecast1[i] = left * forecast1[i]
    for i in range(0,len(forecast1),1):
        forecast1[i] = forecast1[i] + right

    #print(forecast1[-1]-forecast1[0])
    #print(forecast1)
       #exchange=[]
    #for i in range(1,len(forecast1),1):
    #    exchange.append(forecast1[i]-forecast1[i-1])
    return int(abs(round(forecast1[-1]-forecast1[0])))
コード例 #10
0
ファイル: game.py プロジェクト: Deephan/tic-tac-toe-for-slack
    def evaluate(self):
        '''
            Evaluate the current state of the board for completion of the game.

            A game is complete if any of the three cases apply

            (i)   Any row with only crosses (X) or circles (O)
            (ii)  Any column with only crosses (X) or circles (O)
            (iii) Any diagonal with only crosses (X) or circles (O)

            Note that a cross or circle uniquely identifies a player

         '''
        from pymatrix import matrix
        gameBoard = self.board
        mat = matrix(gameBoard.board)
        players = ['X','O']

        def evaluateRows():
            """   Evaluates each row in the matrix for a win   """
            for sign in players:
                for row in mat.rows():
                    win = True
                    for element in row:
                        if(element != sign):
                            win = False
                    if win is True:
                        self.winner = self.getNextTurn()
                        self.gameComplete = True
                        return
            return

        def evaluateColumns():
            """   Evaluates each column in the matrix for a win   """
            for sign in players:
                for col in mat.cols():
                    win = True
                    for element in col:
                        if(element != sign):
                            win = False
                    if win is True:
                        self.winner = self.getNextTurn()
                        self.gameComplete = True
                        return
            return

        def evaluateDiagonals():
            """   Evaluates each diagonal in the matrix for a win   """
            for sign in players:
                #   Right Diagonal
                if(gameBoard.getElement(1) == gameBoard.getElement(5) == gameBoard.getElement(9) == sign):
                    self.gameComplete = True
                    self.winner = self.getNextTurn()
                    return
                #   Left Diagonal
                if(gameBoard.getElement(3) == gameBoard.getElement(5) == gameBoard.getElement(7) == sign):
                    self.gameComplete = True
                    self.winner = self.getNextTurn()
                    return
            return

        evaluateRows()
        evaluateColumns()
        evaluateDiagonals()
        return
コード例 #11
0
ファイル: infopy.py プロジェクト: a-robu/infopy
def test_colvec():
    assert matrix([[0.3], [0.5], [0.2]]) == colvec([0.3, 0.5, 0.2])
コード例 #12
0
ファイル: infopy.py プロジェクト: a-robu/infopy
def test_spike():
    assert matrix('0 \n 0 \n 1 \n 0') == spike(4, 2)
コード例 #13
0
def predict_vm(ecs_lines, input_lines):
    # Do your work from here#
    result = []
    if ecs_lines is None:
        print('ecs information is none')
        return result
    if input_lines is None:
        print('input file information is none')
        return result

    #训练第一天的0点 预测第一天的0点
    ecs_first_date_zero = ecs_lines[0].split(
        "\t")[2].strip().split()[0] + " " + "00:00:00"
    ecs_first_date_zero = time.strptime(ecs_first_date_zero,
                                        "%Y-%m-%d %H:%M:%S")
    input_first_date_zero = input_lines[-2].strip().split(
    )[0] + " " + "00:00:00"
    input_first_date_zero = time.strptime(input_first_date_zero,
                                          "%Y-%m-%d %H:%M:%S")
    kuadu_first_last_day = (time.mktime(input_first_date_zero) -
                            time.mktime(ecs_first_date_zero)) / nd
    kuadu_first_last_day = int(kuadu_first_last_day)
    #print(u"时间跨度为"+str(kuadu_first_last_day))
    # 行数为虚拟机的规格 列数是天数
    ecs_xunlian = []
    for i in range(30):
        t = []
        for j in range(kuadu_first_last_day):
            t.append(0)
        ecs_xunlian.append(t)

    for ecs_line in ecs_lines:
        ecs_line = ecs_line.strip()
        ecs_now_name = ecs_line.split("\t")[1]
        ecs_now_no = int(ecs_now_name.replace("flavor", ""))

        ecs_now_date = ecs_line.split("\t")[2]
        ecs_now_date = time.strptime(ecs_now_date, "%Y-%m-%d %H:%M:%S")
        #print(ecs_now_name+" "+str(ecs_now_no)+" "+str(ecs_now_date))
        ecs_kuadu_first_now_day = (time.mktime(ecs_now_date) -
                                   time.mktime(ecs_first_date_zero)) / nd
        ecs_kuadu_first_now_day = int(ecs_kuadu_first_now_day)
        ecs_xunlian[ecs_now_no][ecs_kuadu_first_now_day] = ecs_xunlian[
            ecs_now_no][ecs_kuadu_first_now_day] + 1
    '''
    print(u"训练集中的数据")
    print(len(ecs_xunlian))
    print(len(ecs_xunlian[0]))
    temp = pymatrix.matrix(ecs_xunlian)
    print(temp)
    '''

    # 获得要预测的规格
    input_num = int(input_lines[2].strip())
    input_nos = []
    for i in range(input_num):
        input_line = input_lines[i + 3]
        input_no = input_line.strip().split()[0].replace("flavor", "")
        input_no = int(input_no)
        input_nos.append(input_no)
    train_data = fluth_data.quZao2(ecs_xunlian, input_nos)
    '''
    print(u"===去噪之后===")
    for t in train_data:
        print(t)
    print(len(train_data))
    print(len(train_data[0]))
    print("==============")
    '''

    #预测的第一天 预测的最后一天
    input_first_date = input_lines[-2].strip()
    input_first_date = time.strptime(input_first_date, "%Y-%m-%d %H:%M:%S")
    input_last_date = input_lines[-1].strip()
    input_last_date = time.strptime(input_last_date, "%Y-%m-%d %H:%M:%S")

    kuadu_first_last_day = (time.mktime(input_last_date) -
                            time.mktime(input_first_date)) / nd
    kuadu_first_last_day = int(kuadu_first_last_day)
    #print(u"时间跨度为:"+str(kuadu_first_last_day))

    # 对数据进行预处理
    train_data = preprocess.pp(train_data, kuadu_first_last_day)
    '''
    print(u"===预处理之后之后===")
    for t in train_data:
        print(t)
    print(len(train_data))
    print(len(train_data[0]))
    print("==============")
    '''

    mm = pymatrix.matrix(train_data)
    mm = mm.transpose()

    #print(u'===GM算法的输入值===')
    print(mm)

    #print(mm.colAt(5))
    #print(mm.colAt(7))
    res = GM11.yuce(2, mm)
    #print(res)

    # 获得要预测的规格
    yuce_flvorname_flavornum_s = {}
    input_num = int(input_lines[2].strip())
    for i in range(input_num):
        input_line = input_lines[i + 3]
        input_line_name = input_line.split(" ")[0]
        yuce_flvorname_flavornum_s[input_line_name] = int(round(res[i]))
    print(yuce_flvorname_flavornum_s)
    ######################
    # 开始装箱
    #####################
    # input文件中的物理机的规格
    input_wuLiJi_cpu = int(input_lines[0].split(" ")[0])
    input_wuLiJi_mem = int(input_lines[0].split(" ")[1])

    #input文件中需要预测的虚拟机[("flavor1",12,1024),("flavor1",12,1024)]
    input_xuNiJis = []
    i = 3
    while (i < 3 + int(input_lines[2].strip())):
        input_now_flavor_name = input_lines[i].strip().split(" ")[0]
        input_now_flavor_CPU = int(input_lines[i].strip().split(" ")[1])
        input_now_flavor_MEM = int(input_lines[i].strip().split(" ")[2])
        input_now_flavor = [
            input_now_flavor_name, input_now_flavor_CPU, input_now_flavor_MEM
        ]
        input_xuNiJis.append(input_now_flavor)
        i = i + 1
    input_xuNiJis.reverse()
    cpus = []
    mems = []
    names = []
    for input_xuNiJi in input_xuNiJis:
        input_xuNiJi_name = input_xuNiJi[0]
        input_xuNiJi_CPU = input_xuNiJi[1]
        input_xuNiJi_MEM = input_xuNiJi[2] / 1024

        nums = yuce_flvorname_flavornum_s[input_xuNiJi_name]
        for i in range(nums):
            cpus.append(input_xuNiJi_CPU)
            mems.append(input_xuNiJi_MEM)
            names.append(input_xuNiJi_name)

    # 优化的维度
    input_weidu = input_lines[3 + int(input_lines[2].strip()) + 1].strip()
    if (input_weidu == "CPU"):
        zx_wuLiJis, _ = memory_alloction.get_memory_allocation(
            input_wuLiJi_cpu, input_wuLiJi_mem, cpus, mems, names)
    elif (input_weidu == "MEM"):
        zx_wuLiJis, _ = memory_alloction.get_memory_allocation(
            input_wuLiJi_mem, input_wuLiJi_cpu, mems, cpus, names)
    else:
        print("出错了,别玩了")
    print(zx_wuLiJis)
    #开始输出结果
    result = []
    sum = 0
    for input_xuNiJi in input_xuNiJis:
        input_xuNiJi_name = input_xuNiJi[0]
        input_xuNiJi_num = yuce_flvorname_flavornum_s.get(input_xuNiJi_name)
        sum = sum + input_xuNiJi_num
        result.append(input_xuNiJi_name + " " + str(input_xuNiJi_num))
    result.insert(0, str(sum))
    result.append("")
    result.append(len(zx_wuLiJis))
    print(result)
    for i in range(0, len(zx_wuLiJis), 1):
        zx_wuLiJi = zx_wuLiJis[i]
        sss = str(i + 1)
        temp = {}
        for xuNiJi in zx_wuLiJi:
            if (temp.has_key(xuNiJi)):
                temp[xuNiJi] = temp[xuNiJi] + 1
            else:
                temp[xuNiJi] = 1
        print(temp)
        for name in temp:
            sss = sss + " " + name + " " + str(temp[name])
        print(sss)
        result.append(sss.strip())

    return result
コード例 #14
0
import random

from pymatrix import matrix
import numpy as np


def mlp(input):
    hiddenNeuron = 4
    learningRate = 0.6
    epoch = 3000
    maxMSE = 10 ^ -6

    #define W1
    W1 = matrix([])
    for i in range(0, input):
        temp = []
        for j in range(0, hiddenNeuron):
            temp.append(1)
        W1.append(temp)

    return W1


m = matrix([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])

c = matrix([[2, 4], [6, 1]])

m = matrix([])
print()