コード例 #1
0
ファイル: classify.py プロジェクト: cygnine/spyctral
 def apply_stiffness_matrix(self,modes):
     from scipy.sparse.csr import csr_matrix
     from numpy import ndarray, dot
     if self.stiffness_matrix is None:
         self.make_stiffness_matrix()
     if isinstance(self.stiffness_matrix,csr_matrix):
         try: 
             from pymbolic.algorithm import csr_matrix_multiply
             return csr_matrix_multiply(self.stiffness_matrix,modes)
         except:
             return self.stiffness_matrix*modes
     elif isinstance(self.stiffness_matrix,ndarray):
         return dot(self.stiffness_matrix,modes)
     else:
         raise TypeError("Unrecognized type %s for stiffness matrix" % \
                 type(self.stiffness_matrix))
コード例 #2
0
def test_sparse_multiply():
    numpy = pytest.importorskip("numpy")
    pytest.importorskip("scipy")
    import scipy.sparse as ss

    la = numpy.linalg

    mat = numpy.random.randn(10, 10)
    s_mat = ss.csr_matrix(mat)

    vec = numpy.random.randn(10)
    mat_vec = s_mat * vec

    from pymbolic.algorithm import csr_matrix_multiply
    mat_vec_2 = csr_matrix_multiply(s_mat, vec)

    assert la.norm(mat_vec - mat_vec_2) < 1e-14
コード例 #3
0
def test_sparse_multiply():
    numpy = pytest.importorskip("numpy")
    pytest.importorskip("scipy")
    import scipy.sparse as ss

    la = numpy.linalg

    mat = numpy.random.randn(10, 10)
    s_mat = ss.csr_matrix(mat)

    vec = numpy.random.randn(10)
    mat_vec = s_mat*vec

    from pymbolic.algorithm import csr_matrix_multiply
    mat_vec_2 = csr_matrix_multiply(s_mat, vec)

    assert la.norm(mat_vec-mat_vec_2) < 1e-14
コード例 #4
0
ファイル: operators.py プロジェクト: cygnine/spyctral
def fft_nodal_differentiation(fx, **kwargs):
    """Given the nodal function values, returns the nodal approximations to the
    derivative computed using:
        1.) the fft
        2.) application of the sparse stiffness matrix to the nodes
        3.) the ifft
    s must be an integer for all this to work.
    """

    from spyctral.wiener.matrices import weighted_wiener_stiffness_matrix as stiffmat
    from spyctral.wiener.fft import fft_collocation as fft
    from spyctral.wiener.fft import ifft_collocation as ifft

    stiff = stiffmat(len(fx), **kwargs)
    if fx.dtype == object:
        from pymbolic.algorithm import csr_matrix_multiply

        temp = fft(fx, **kwargs)
        temp = csr_matrix_multiply(stiff, temp)
        return ifft(temp, **kwargs)
    else:
        return ifft(stiff * fft(fx, **kwargs), **kwargs)