コード例 #1
0
    def conditional(self, name, Xnew, pred_noise=False, given=None, **kwargs):
        R"""
        Returns the approximate conditional distribution of the GP evaluated over
        new input locations `Xnew`.

        Parameters
        ----------
        name: string
            Name of the random variable
        Xnew: array-like
            Function input values.  If one-dimensional, must be a column
            vector with shape `(n, 1)`.
        pred_noise: bool
            Whether or not observation noise is included in the conditional.
            Default is `False`.
        given: dict
            Can optionally take as key value pairs: `X`, `Xu`, `y`, `noise`,
            and `gp`.  See the section in the documentation on additive GP
            models in PyMC for more information.
        **kwargs
            Extra keyword arguments that are passed to `MvNormal` distribution
            constructor.
        """

        givens = self._get_given_vals(given)
        mu, cov = self._build_conditional(Xnew, pred_noise, False, *givens)
        shape = infer_shape(Xnew, kwargs.pop("shape", None))
        return pm.MvNormal(name, mu=mu, cov=cov, size=shape, **kwargs)
コード例 #2
0
    def conditional(self, name, Xnew, **kwargs):
        """
        Returns the conditional distribution evaluated over new input
        locations `Xnew`.

        `Xnew` will be split by columns and fed to the relevant
        covariance functions based on their `input_dim`. For example, if
        `cov_func1`, `cov_func2`, and `cov_func3` have `input_dim` of 2,
        1, and 4, respectively, then `Xnew` must have 7 columns and a
        covariance between the prediction points

        .. code:: python

            cov_func(Xnew) = cov_func1(Xnew[:, :2]) * cov_func1(Xnew[:, 2:3]) * cov_func1(Xnew[:, 3:])

        The distribution returned by `conditional` does not have a
        Kronecker structure regardless of whether the input points lie
        on a full grid.  Therefore, `Xnew` does not need to have grid
        structure.

        Parameters
        ----------
        name: string
            Name of the random variable
        Xnew: array-like
            Function input values.  If one-dimensional, must be a column
            vector with shape `(n, 1)`.
        **kwargs
            Extra keyword arguments that are passed to `MvNormal` distribution
            constructor.
        """
        mu, cov = self._build_conditional(Xnew)
        shape = infer_shape(Xnew, kwargs.pop("shape", None))
        return pm.MvNormal(name, mu=mu, cov=cov, size=shape, **kwargs)
コード例 #3
0
    def conditional(self, name, Xnew, **kwargs):
        R"""
        Returns the conditional distribution evaluated over new input
        locations `Xnew`.

        Given a set of function values `f` that
        the TP prior was over, the conditional distribution over a
        set of new points, `f_*` is

        Parameters
        ----------
        name: string
            Name of the random variable
        Xnew: array-like
            Function input values.
        **kwargs
            Extra keyword arguments that are passed to `MvNormal` distribution
            constructor.
        """

        X = self.X
        f = self.f
        nu2, mu, cov = self._build_conditional(Xnew, X, f)
        shape = infer_shape(Xnew, kwargs.pop("shape", None))
        return pm.MvStudentT(name, nu=nu2, mu=mu, cov=cov, size=shape, **kwargs)
コード例 #4
0
    def conditional(self, name, Xnew, given=None, **kwargs):
        R"""
        Returns the conditional distribution evaluated over new input
        locations `Xnew`.

        Given a set of function values `f` that
        the GP prior was over, the conditional distribution over a
        set of new points, `f_*` is

        .. math::

           f_* \mid f, X, X_* \sim \mathcal{GP}\left(
               K(X_*, X) K(X, X)^{-1} f \,,
               K(X_*, X_*) - K(X_*, X) K(X, X)^{-1} K(X, X_*) \right)

        Parameters
        ----------
        name: string
            Name of the random variable
        Xnew: array-like
            Function input values.
        given: dict
            Can optionally take as key value pairs: `X`, `y`, `noise`,
            and `gp`.  See the section in the documentation on additive GP
            models in PyMC for more information.
        **kwargs
            Extra keyword arguments that are passed to `MvNormal` distribution
            constructor.
        """
        givens = self._get_given_vals(given)
        mu, cov = self._build_conditional(Xnew, *givens)
        shape = infer_shape(Xnew, kwargs.pop("shape", None))
        return pm.MvNormal(name, mu=mu, cov=cov, size=shape, **kwargs)
コード例 #5
0
 def _build_prior(self, name, X, reparameterize=True, **kwargs):
     mu = self.mean_func(X)
     cov = stabilize(self.cov_func(X))
     shape = infer_shape(X, kwargs.pop("shape", None))
     if reparameterize:
         v = pm.Normal(name + "_rotated_", mu=0.0, sigma=1.0, size=shape, **kwargs)
         f = pm.Deterministic(name, mu + cholesky(cov).dot(v))
     else:
         f = pm.MvNormal(name, mu=mu, cov=cov, size=shape, **kwargs)
     return f
コード例 #6
0
 def _build_prior(self, name, X, reparameterize=True, **kwargs):
     mu = self.mean_func(X)
     cov = stabilize(self.cov_func(X))
     shape = infer_shape(X, kwargs.pop("shape", None))
     if reparameterize:
         chi2 = pm.ChiSquared(name + "_chi2_", self.nu)
         v = pm.Normal(name + "_rotated_", mu=0.0, sigma=1.0, size=shape, **kwargs)
         f = pm.Deterministic(name, (at.sqrt(self.nu) / chi2) * (mu + cholesky(cov).dot(v)))
     else:
         f = pm.MvStudentT(name, nu=self.nu, mu=mu, cov=cov, size=shape, **kwargs)
     return f
コード例 #7
0
    def marginal_likelihood(self, name, X, y, noise, is_observed=True, **kwargs):
        R"""
        Returns the marginal likelihood distribution, given the input
        locations `X` and the data `y`.

        This is integral over the product of the GP prior and a normal likelihood.

        .. math::

           y \mid X,\theta \sim \int p(y \mid f,\, X,\, \theta) \, p(f \mid X,\, \theta) \, df

        Parameters
        ----------
        name: string
            Name of the random variable
        X: array-like
            Function input values.  If one-dimensional, must be a column
            vector with shape `(n, 1)`.
        y: array-like
            Data that is the sum of the function with the GP prior and Gaussian
            noise.  Must have shape `(n, )`.
        noise: scalar, Variable, or Covariance
            Standard deviation of the Gaussian noise.  Can also be a Covariance for
            non-white noise.
        is_observed: bool
            Whether to set `y` as an `observed` variable in the `model`.
            Default is `True`.
        **kwargs
            Extra keyword arguments that are passed to `MvNormal` distribution
            constructor.
        """

        if not isinstance(noise, Covariance):
            noise = pm.gp.cov.WhiteNoise(noise)
        mu, cov = self._build_marginal_likelihood(X, noise)
        self.X = X
        self.y = y
        self.noise = noise
        if is_observed:
            return pm.MvNormal(name, mu=mu, cov=cov, observed=y, **kwargs)
        else:
            shape = infer_shape(X, kwargs.pop("shape", None))
            return pm.MvNormal(name, mu=mu, cov=cov, size=shape, **kwargs)