コード例 #1
0
ファイル: test_ode.py プロジェクト: bwengals/pymc3
def test_simulate():
    """Tests the integration in DifferentialEquation"""

    # Create an ODe to integrate
    def ode_func(y, t, p):
        return np.exp(-t) - p[0] * y[0]

    # Evaluate exact solution
    y0 = 0
    t = np.arange(0, 12, 0.25).reshape(-1, 1)
    a = 0.472
    y = 1.0 / (a - 1) * (np.exp(-t) - np.exp(-a * t))

    # Instantiate ODE model
    ode_model = DifferentialEquation(func=ode_func,
                                     t0=0,
                                     times=t,
                                     n_states=1,
                                     n_theta=1)

    simulated_y, sens = ode_model._simulate([y0], [a])

    assert simulated_y.shape == (len(t), 1)
    assert sens.shape == (len(t), 1, 1 + 1)
    np.testing.assert_allclose(y, simulated_y, rtol=1e-5)
コード例 #2
0
ファイル: test_ode.py プロジェクト: bwengals/pymc3
    def test_op_equality(self):
        """Tests that the equality of mathematically identical Ops evaluates True"""

        # Create ODE to test with
        def ode_func(y, t, p):
            return np.exp(-t) - p[0] * y[0]

        t = np.linspace(0, 2, 12)

        # Instantiate two Ops
        op_1 = DifferentialEquation(func=ode_func,
                                    t0=0,
                                    times=t,
                                    n_states=1,
                                    n_theta=1)
        op_2 = DifferentialEquation(func=ode_func,
                                    t0=0,
                                    times=t,
                                    n_states=1,
                                    n_theta=1)
        op_other = DifferentialEquation(func=ode_func,
                                        t0=0,
                                        times=np.linspace(0, 2, 16),
                                        n_states=1,
                                        n_theta=1)

        assert op_1 == op_2
        assert op_1 != op_other
        return
コード例 #3
0
ファイル: test_ode.py プロジェクト: kc611/pymc3
def test_logp_scalar_ode():
    """Test the computation of the log probability for these models"""

    # Differential equation
    def system_1(y, t, p):
        return np.exp(-t) - p[0] * y[0]

    # Parameters and inital condition
    alpha = 0.4
    y0 = 0.0
    times = np.arange(0.5, 8, 0.5)

    yobs = np.array(
        [0.30, 0.56, 0.51, 0.55, 0.47, 0.42, 0.38, 0.30, 0.26, 0.21, 0.22, 0.13, 0.13, 0.09, 0.09]
    )[:, np.newaxis]

    ode_model = DifferentialEquation(func=system_1, t0=0, times=times, n_theta=1, n_states=1)

    integrated_solution, *_ = ode_model._simulate([y0], [alpha])

    assert integrated_solution.shape == yobs.shape

    # compare automatic and manual logp values
    manual_logp = norm.logpdf(x=np.ravel(yobs), loc=np.ravel(integrated_solution), scale=1).sum()
    with pm.Model() as model_1:
        forward = ode_model(theta=[alpha], y0=[y0])
        y = pm.Normal("y", mu=forward, sd=1, observed=yobs)
    pymc_logp = model_1.logp()

    np.testing.assert_allclose(manual_logp, pymc_logp)
コード例 #4
0
 def test_func_callable(self):
     with pytest.raises(ValueError):
         DifferentialEquation(func=1,
                              t0=0,
                              times=self.times,
                              n_states=1,
                              n_theta=1)
コード例 #5
0
ファイル: test_ode.py プロジェクト: kc611/pymc3
    def test_scalar_ode_2_param(self):
        """Test running model for a scalar ODE with 2 parameters"""

        def system(y, t, p):
            return p[0] * np.exp(-p[0] * t) - p[1] * y[0]

        times = np.array(
            [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5]
        )

        yobs = np.array(
            [0.31, 0.57, 0.51, 0.55, 0.47, 0.42, 0.38, 0.3, 0.26, 0.22, 0.22, 0.14, 0.14, 0.09, 0.1]
        )[:, np.newaxis]

        ode_model = DifferentialEquation(func=system, t0=0, times=times, n_states=1, n_theta=2)

        with pm.Model() as model:
            alpha = pm.HalfCauchy("alpha", 1)
            beta = pm.HalfCauchy("beta", 1)
            y0 = pm.LogNormal("y0", 0, 1)
            sigma = pm.HalfCauchy("sigma", 1)
            forward = ode_model(theta=[alpha, beta], y0=[y0])
            y = pm.LogNormal("y", mu=pm.math.log(forward), sd=sigma, observed=yobs)

            idata = pm.sample(100, tune=0, chains=1)

        assert idata.posterior["alpha"].shape == (1, 100)
        assert idata.posterior["beta"].shape == (1, 100)
        assert idata.posterior["y0"].shape == (1, 100)
        assert idata.posterior["sigma"].shape == (1, 100)
コード例 #6
0
 def test_number_of_params(self):
     with pytest.raises(ValueError):
         DifferentialEquation(func=self.system,
                              t0=0,
                              times=self.times,
                              n_states=1,
                              n_theta=0)
コード例 #7
0
    def test_scalar_ode_1_param(self):
        """Test running model for a scalar ODE with 1 parameter"""

        def system(y, t, p):
            return np.exp(-t) - p[0] * y[0]

        times = np.array(
            [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5]
        )

        yobs = np.array(
            [0.31, 0.57, 0.51, 0.55, 0.47, 0.42, 0.38, 0.3, 0.26, 0.22, 0.22, 0.14, 0.14, 0.09, 0.1]
        )[:, np.newaxis]

        ode_model = DifferentialEquation(func=system, t0=0, times=times, n_states=1, n_theta=1)

        with pm.Model() as model:
            alpha = pm.HalfCauchy("alpha", 1)
            y0 = pm.LogNormal("y0", 0, 1)
            sigma = pm.HalfCauchy("sigma", 1)
            forward = ode_model(theta=[alpha], y0=[y0])
            y = pm.LogNormal("y", mu=pm.math.log(forward), sigma=sigma, observed=yobs)

            with aesara.config.change_flags(mode=fast_unstable_sampling_mode):
                idata = pm.sample(50, tune=0, chains=1)

        assert idata.posterior["alpha"].shape == (1, 50)
        assert idata.posterior["y0"].shape == (1, 50)
        assert idata.posterior["sigma"].shape == (1, 50)
コード例 #8
0
class TestErrors:
    """Test running model for a scalar ODE with 1 parameter"""
    def system(y, t, p):
        return np.exp(-t) - p[0] * y[0]

    times = np.arange(0, 9)

    ode_model = DifferentialEquation(func=system,
                                     t0=0,
                                     times=times,
                                     n_states=1,
                                     n_theta=1)

    @pytest.mark.xfail(condition=(IS_FLOAT32 and IS_WINDOWS),
                       reason="Fails on float32 on Windows")
    def test_too_many_params(self):
        with pytest.raises(pm.ShapeError):
            self.ode_model(theta=[1, 1], y0=[0])

    @pytest.mark.xfail(condition=(IS_FLOAT32 and IS_WINDOWS),
                       reason="Fails on float32 on Windows")
    def test_too_many_y0(self):
        with pytest.raises(pm.ShapeError):
            self.ode_model(theta=[1], y0=[0, 0])

    @pytest.mark.xfail(condition=(IS_FLOAT32 and IS_WINDOWS),
                       reason="Fails on float32 on Windows")
    def test_too_few_params(self):
        with pytest.raises(pm.ShapeError):
            self.ode_model(theta=[], y0=[1])

    @pytest.mark.xfail(condition=(IS_FLOAT32 and IS_WINDOWS),
                       reason="Fails on float32 on Windows")
    def test_too_few_y0(self):
        with pytest.raises(pm.ShapeError):
            self.ode_model(theta=[1], y0=[])

    def test_func_callable(self):
        with pytest.raises(ValueError):
            DifferentialEquation(func=1,
                                 t0=0,
                                 times=self.times,
                                 n_states=1,
                                 n_theta=1)

    def test_number_of_states(self):
        with pytest.raises(ValueError):
            DifferentialEquation(func=self.system,
                                 t0=0,
                                 times=self.times,
                                 n_states=0,
                                 n_theta=1)

    def test_number_of_params(self):
        with pytest.raises(ValueError):
            DifferentialEquation(func=self.system,
                                 t0=0,
                                 times=self.times,
                                 n_states=1,
                                 n_theta=0)
コード例 #9
0
ファイル: test_ode.py プロジェクト: bwengals/pymc3
 def test_number_of_states(self):
     with pytest.raises(ValueError,
                        match="Argument n_states must be at least 1."):
         DifferentialEquation(func=self.system,
                              t0=0,
                              times=self.times,
                              n_states=0,
                              n_theta=1)
コード例 #10
0
ファイル: test_ode.py プロジェクト: bwengals/pymc3
 def test_number_of_params(self):
     with pytest.raises(ValueError,
                        match="Argument n_theta must be positive"):
         DifferentialEquation(func=self.system,
                              t0=0,
                              times=self.times,
                              n_states=1,
                              n_theta=0)
コード例 #11
0
ファイル: test_ode.py プロジェクト: bwengals/pymc3
 def test_func_callable(self):
     with pytest.raises(ValueError,
                        match="Argument func must be callable."):
         DifferentialEquation(func=1,
                              t0=0,
                              times=self.times,
                              n_states=1,
                              n_theta=1)
コード例 #12
0
    def setup_method(self, method):
        def system(y, t, p):
            return np.exp(-t) - p[0] * y[0]

        self.system = system
        self.times = np.arange(0, 9)
        self.ode_model = DifferentialEquation(
            func=system, t0=0, times=self.times, n_states=1, n_theta=1
        )
コード例 #13
0
    def test_unexpected_return_type_dict(self):
        with pytest.raises(
            TypeError, match="Unexpected type, <class 'dict'>, returned by ode_func."
        ):

            def system_dict(y, t, p):
                return {"rhs": np.exp(-t) - p[0] * y[0]}

            DifferentialEquation(func=system_dict, t0=0, times=self.times, n_states=4, n_theta=1)
コード例 #14
0
ファイル: test_ode.py プロジェクト: kc611/pymc3
    def test_sens_ic_scalar_2_param(self):
        # Scalar ODE 2 Param
        def ode_func_2(y, t, p):
            return p[0] * np.exp(-p[0] * t) - p[1] * y[0]

        # Instantiate ODE model
        model2 = DifferentialEquation(func=ode_func_2, t0=0, times=self.t, n_states=1, n_theta=2)

        model2_sens_ic = np.array([1, 0, 0])

        np.testing.assert_array_equal(model2_sens_ic, model2._sens_ic)
コード例 #15
0
    def test_list_shape(self):
        with pytest.raises(ValueError, match="returned a 2-dimensional tensor"):

            def system_2d_list(y, t, p):
                s0 = np.exp(-t) - p[0] * y[0]
                s1 = np.exp(-t) - p[0] * y[1]
                s2 = np.exp(-t) - p[0] * y[2]
                s3 = np.exp(-t) - p[0] * y[3]
                return [[s0, s1], [s2, s3]]

            DifferentialEquation(func=system_2d_list, t0=0, times=self.times, n_states=4, n_theta=1)
コード例 #16
0
    def test_tensor_shape(self):
        with pytest.raises(ValueError, match="returned a 2-dimensional tensor"):

            def system_2d_tensor(y, t, p):
                s0 = np.exp(-t) - p[0] * y[0]
                s1 = np.exp(-t) - p[0] * y[1]
                s2 = np.exp(-t) - p[0] * y[2]
                s3 = np.exp(-t) - p[0] * y[3]
                return at.stack((s0, s1, s2, s3)).reshape((2, 2))

            DifferentialEquation(
                func=system_2d_tensor, t0=0, times=self.times, n_states=4, n_theta=1
            )
コード例 #17
0
ファイル: test_ode.py プロジェクト: kc611/pymc3
    def test_sens_ic_vector_2_param(self):
        # Vector ODE 2 Param
        def ode_func_4(y, t, p):
            ds = -p[0] * y[0] * y[1]
            di = p[0] * y[0] * y[1] - p[1] * y[1]

            return [ds, di]

        # Instantiate ODE model
        model4 = DifferentialEquation(func=ode_func_4, t0=0, times=self.t, n_states=2, n_theta=2)

        model4_sens_ic = np.array([1, 0, 0, 0, 0, 1, 0, 0])

        np.testing.assert_array_equal(model4_sens_ic, model4._sens_ic)
コード例 #18
0
ファイル: test_ode.py プロジェクト: kc611/pymc3
    def test_sens_ic_scalar_1_param(self):
        """Tests the creation of the initial condition for the sensitivities"""
        # Scalar ODE 1 Param
        # Create an ODe to integrate
        def ode_func_1(y, t, p):
            return np.exp(-t) - p[0] * y[0]

        # Instantiate ODE model
        # Instantiate ODE model
        model1 = DifferentialEquation(func=ode_func_1, t0=0, times=self.t, n_states=1, n_theta=1)

        # Sensitivity initial condition for this model should be 1 by 2
        model1_sens_ic = np.array([1, 0])

        np.testing.assert_array_equal(model1_sens_ic, model1._sens_ic)
コード例 #19
0
    def test_sens_ic_vector_2_param_tensor(self):
        # Vector ODE 2 Param with return type at.TensorVariable
        def ode_func_4_t(y, t, p):
            # Make sure that ds and di are vectors by slicing
            ds = -p[0:1] * y[0:1] * y[1:]
            di = p[0:1] * y[0:1] * y[1:] - p[1:] * y[1:]

            return at.concatenate([ds, di], axis=0)

        # Instantiate ODE model
        model4_t = DifferentialEquation(
            func=ode_func_4_t, t0=0, times=self.t, n_states=2, n_theta=2
        )

        model4_sens_ic_t = np.array([1, 0, 0, 0, 0, 1, 0, 0])

        np.testing.assert_array_equal(model4_sens_ic_t, model4_t._sens_ic)
コード例 #20
0
ファイル: test_ode.py プロジェクト: bwengals/pymc3
    def test_vector_ode_2_param(self):
        """Test running model for a vector ODE with 2 parameters"""
        def system(y, t, p):
            ds = -p[0] * y[0] * y[1]
            di = p[0] * y[0] * y[1] - p[1] * y[1]
            return [ds, di]

        times = np.array(
            [0.0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0])

        yobs = np.array([
            [1.02, 0.02],
            [0.86, 0.12],
            [0.43, 0.37],
            [0.14, 0.42],
            [0.05, 0.43],
            [0.03, 0.14],
            [0.02, 0.08],
            [0.02, 0.04],
            [0.02, 0.01],
            [0.02, 0.01],
            [0.02, 0.01],
        ])

        ode_model = DifferentialEquation(func=system,
                                         t0=0,
                                         times=times,
                                         n_states=2,
                                         n_theta=2)

        with pm.Model() as model:
            beta = pm.HalfCauchy("beta", 1, initval=1)
            gamma = pm.HalfCauchy("gamma", 1, initval=1)
            sigma = pm.HalfCauchy("sigma", 1, shape=2, initval=[1, 1])
            forward = ode_model(theta=[beta, gamma], y0=[0.99, 0.01])
            y = pm.LogNormal("y",
                             mu=pm.math.log(forward),
                             sigma=sigma,
                             observed=yobs)

            with aesara.config.change_flags(mode=fast_unstable_sampling_mode):
                idata = pm.sample(50, tune=0, chains=1)

        assert idata.posterior["beta"].shape == (1, 50)
        assert idata.posterior["gamma"].shape == (1, 50)
        assert idata.posterior["sigma"].shape == (1, 50, 2)
コード例 #21
0
ファイル: test_ode.py プロジェクト: kc611/pymc3
    def test_sens_ic_vector_3_params(self):
        # Big System with Many Parameters
        def ode_func_5(y, t, p):
            dx = p[0] * (y[1] - y[0])
            ds = y[0] * (p[1] - y[2]) - y[1]
            dz = y[0] * y[1] - p[2] * y[2]

            return [dx, ds, dz]

        # Instantiate ODE model
        model5 = DifferentialEquation(func=ode_func_5, t0=0, times=self.t, n_states=3, n_theta=3)

        # First three columns are derivatives with respect to ode parameters
        # Last three coluimns are derivatives with repsect to initial condition
        # So identity matrix should appear in last 3 columns
        model5_sens_ic = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0]])

        np.testing.assert_array_equal(np.ravel(model5_sens_ic), model5._sens_ic)
コード例 #22
0
    def test_vector_ode_1_param(self):
        """Test running model for a vector ODE with 1 parameter"""
        def system(y, t, p):
            ds = -p[0] * y[0] * y[1]
            di = p[0] * y[0] * y[1] - y[1]
            return [ds, di]

        times = np.array(
            [0.0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0])

        yobs = np.array([
            [1.02, 0.02],
            [0.86, 0.12],
            [0.43, 0.37],
            [0.14, 0.42],
            [0.05, 0.43],
            [0.03, 0.14],
            [0.02, 0.08],
            [0.02, 0.04],
            [0.02, 0.01],
            [0.02, 0.01],
            [0.02, 0.01],
        ])

        ode_model = DifferentialEquation(func=system,
                                         t0=0,
                                         times=times,
                                         n_states=2,
                                         n_theta=1)

        with pm.Model() as model:
            R = pm.LogNormal("R", 1, 5, initval=1)
            sigma = pm.HalfCauchy("sigma", 1, shape=2, initval=[0.5, 0.5])
            forward = ode_model(theta=[R], y0=[0.99, 0.01])
            y = pm.LogNormal("y",
                             mu=pm.math.log(forward),
                             sd=sigma,
                             observed=yobs)

            idata = pm.sample(100, tune=0, chains=1)

        assert idata.posterior["R"].shape == (1, 100)
        assert idata.posterior["sigma"].shape == (1, 100, 2)