コード例 #1
0
    def test_mv_missing_data_model(self):
        data = ma.masked_values([[1, 2], [2, 2], [-1, 4], [2, -1], [-1, -1]],
                                value=-1)

        model = pm.Model()
        with model:
            mu = pm.Normal("mu", 0, 1, size=2)
            sd_dist = pm.HalfNormal.dist(1.0)
            chol, *_ = pm.LKJCholeskyCov("chol_cov",
                                         n=2,
                                         eta=1,
                                         sd_dist=sd_dist,
                                         compute_corr=True)
            y = pm.MvNormal("y", mu=mu, chol=chol, observed=data)
            inference_data = pm.sample(100,
                                       chains=2,
                                       return_inferencedata=True)

        # make sure that data is really missing
        assert isinstance(y.owner.op,
                          (AdvancedIncSubtensor, AdvancedIncSubtensor1))

        test_dict = {
            "posterior": ["mu", "chol_cov"],
            "observed_data": ["y"],
            "log_likelihood": ["y"],
        }
        fails = check_multiple_attrs(test_dict, inference_data)
        assert not fails
コード例 #2
0
 def make_model(cls):
     with pm.Model() as model:
         sd_mu = np.array([1, 2, 3, 4, 5])
         sd_dist = pm.LogNormal.dist(mu=sd_mu, sigma=sd_mu / 10.0, size=5)
         chol_packed = pm.LKJCholeskyCov("chol_packed", eta=3, n=5, sd_dist=sd_dist)
         chol = pm.expand_packed_triangular(5, chol_packed, lower=True)
         cov = at.dot(chol, chol.T)
         stds = at.sqrt(at.diag(cov))
         pm.Deterministic("log_stds", at.log(stds))
         corr = cov / stds[None, :] / stds[:, None]
         corr_entries_unit = (corr[np.tril_indices(5, -1)] + 1) / 2
         pm.Deterministic("corr_entries_unit", corr_entries_unit)
     return model
コード例 #3
0
    def test_sample_prior_and_posterior(self):
        def build_toy_dataset(N, K):
            pi = np.array([0.2, 0.5, 0.3])
            mus = [[1, 1, 1], [-1, -1, -1], [2, -2, 0]]
            stds = [[0.1, 0.1, 0.1], [0.1, 0.2, 0.2], [0.2, 0.3, 0.3]]
            x = np.zeros((N, 3), dtype=np.float32)
            y = np.zeros((N, ), dtype=np.int)
            for n in range(N):
                k = np.argmax(np.random.multinomial(1, pi))
                x[n, :] = np.random.multivariate_normal(
                    mus[k], np.diag(stds[k]))
                y[n] = k
            return x, y

        N = 100  # number of data points
        K = 3  # number of mixture components
        D = 3  # dimensionality of the data

        X, y = build_toy_dataset(N, K)

        with pm.Model() as model:
            pi = pm.Dirichlet("pi", np.ones(K), shape=(K, ))

            comp_dist = []
            mu = []
            packed_chol = []
            chol = []
            for i in range(K):
                mu.append(pm.Normal("mu%i" % i, 0, 10, shape=D))
                packed_chol.append(
                    pm.LKJCholeskyCov("chol_cov_%i" % i,
                                      eta=2,
                                      n=D,
                                      sd_dist=pm.HalfNormal.dist(2.5)))
                chol.append(
                    pm.expand_packed_triangular(D, packed_chol[i], lower=True))
                comp_dist.append(
                    pm.MvNormal.dist(mu=mu[i], chol=chol[i], shape=D))

            pm.Mixture("x_obs", pi, comp_dist, observed=X)
        with model:
            idata = pm.sample(30, tune=10, chains=1)

        n_samples = 20
        with model:
            ppc = pm.sample_posterior_predictive(idata, n_samples)
            prior = pm.sample_prior_predictive(samples=n_samples)
        assert ppc["x_obs"].shape == (n_samples, ) + X.shape
        assert prior["x_obs"].shape == (n_samples, ) + X.shape
        assert prior["mu0"].shape == (n_samples, D)
        assert prior["chol_cov_0"].shape == (n_samples, D * (D + 1) // 2)