コード例 #1
0
def main():
    tau = pm.rdiscrete_uniform(0, 80)
    print tau

    alpha = 1. / 20.
    lambda_1, lambda_2 = pm.rexponential(alpha, 2)
    print lambda_1, lambda_2

    data = np.r_[pm.rpoisson(lambda_1, tau), pm.rpoisson(lambda_2, 80 - tau)]

    def plot_artificial_sms_dataset():
        tau = pm.rdiscrete_uniform(0, 80)
        alpha = 1. / 20.
        lambda_1, lambda_2 = pm.rexponential(alpha, 2)
        data = np.r_[pm.rpoisson(lambda_1, tau),
                     pm.rpoisson(lambda_2, 80 - tau)]
        plt.bar(np.arange(80), data, color="#348ABD")
        plt.bar(tau - 1,
                data[tau - 1],
                color="r",
                label="user behaviour changed")
        plt.xlim(0, 80)

    plt.title("More example of artificial datasets")
    for i in range(1, 5):
        plt.subplot(4, 1, i)
        plot_artificial_sms_dataset()
    plt.show()
コード例 #2
0
ファイル: SliceSampler.py プロジェクト: yeagle/PyMC-Slicer
  def step(self):
    """ 
    Slice step method
    """
    y = self.loglike - rexponential(1)

    # Stepping out procedure
    L = self.stochastic.value - self.w*runiform(0,1)
    R = L + self.w
    J = floor(self.m*runiform(0,1))
    K = (self.m-1)-J
    while(J>0 and y<self.fll(L)):
      L = L - self.w
      J = J - 1
    while(K>0 and y<self.fll(R)):
      R = R + self.w
      K = K - 1
    #self.stochastic.last_value = self.stochastic.value
    self.stochastic.value = runiform(L,R)
    try:
      y_new = self.loglike
    except ZeroProbability:
      y_new = -infty
    while(y_new<y):
      if (self.stochastic.value < self.stochastic.last_value):
        L = float(self.stochastic.value)
      else:
        R = float(self.stochastic.value)
      self.stochastic.revert()
      self.stochastic.value = runiform(L,R)
      try:
        y_new = self.loglike
      except ZeroProbability:
        y_new = -infty
コード例 #3
0
def plot_artificial_sms_dataset():
    tau = pm.rdiscrete_uniform(0, 80)
    alpha = 1. / 20.
    lambda_1, lambda_2 = pm.rexponential(alpha, 2)
    data = np.r_[pm.rpoisson(lambda_1, tau), pm.rpoisson(lambda_2, 80 - tau)]
    plt.bar(np.arange(80), data, color="#348ABD")
    plt.bar(tau - 1, data[tau - 1], color="r", label="user behaviour changed")
    plt.xlim(0, 80)
コード例 #4
0
def plot_artificial_sms_dataset():
    maxdays = 80
    tau = pm.rdiscrete_uniform( 0, maxdays )
    alpha = 1 / 20.
    lambda_1, lambda_2 = pm.rexponential( alpha, 2 )
    data = np.r_[
            pm.rpoisson( lambda_1, tau ),
            pm.rpoisson( lambda_2, maxdays-tau )]
    plt.bar( np.arange(maxdays), data )
    plt.bar( tau - 1, data[tau-1], color = 'r', label='change point' )
    plt.xlim( 0, 80 )
コード例 #5
0
def test_selection():
    N = 40
    r = pymc.rexponential(2.0, size=N)
    def prior_x(x):
        """Triangle distribution.
        A = h*L/2 = 1
        """
        L=5
        h = 2./L
        if np.all(0.< x) and np.all(x < L):
            return np.sum(log(h - h/L *x))
        else:
            return -np.inf

    W = select_distribution(r, [pymc.Exponweib, pymc.Exponential, pymc.Weibull, pymc.Chi2], prior_x)
    return W
コード例 #6
0
def plot_artificail_sms_dataset():
    #----------------------------------
    # initialize both deterministic and stochastic variables
    tau = pm.rdiscrete_uniform(0, 80)
    print("tau = {0}".format(tau))
    alpha = 1. / 20.
    lambda_1, lambda_2 = pm.rexponential(alpha, 2)
    print("lambda_1 = {0}\nlambda_2 = {1}".format(lambda_1, lambda_2))
    lambda_ = np.r_[lambda_1 * np.ones(tau), lambda_2 * np.ones(80 - tau)]
    print("lambda = \n{0}".format(lambda_))
    data = pm.rpoisson(lambda_)
    print("data = \n{0}".format(data))
    #-----------------------------------
    # plot the artificial
    plt.bar(np.arange(80), data, color="#348ABD")
    plt.bar(tau - 1, data[tau - 1], color="r", label="user behavior changed")
    plt.xlabel("Time(days)")
    plt.ylabel("Text messages received")
    plt.xlim(0, 80)
コード例 #7
0
ファイル: model_selection.py プロジェクト: rsumner31/pymc3-23
def test_selection():
    N = 40
    r = pymc.rexponential(2.0, size=N)

    def prior_x(x):
        """Triangle distribution.
        A = h*L/2 = 1
        """
        L = 5
        h = 2. / L
        if np.all(0. < x) and np.all(x < L):
            return np.sum(log(h - h / L * x))
        else:
            return -np.inf

    W = select_distribution(
        r, [pymc.Exponweib, pymc.Exponential, pymc.Weibull, pymc.Chi2],
        prior_x)
    return W
コード例 #8
0
ファイル: bayes2.py プロジェクト: ashleyblackmore/bayes
def plot_artifical_sms_dataset():
    # specify when the user's behaviour (amount of sms received) switches by sampling from DiscreteUniform
    tau = rdiscrete_uniform(0, 80)
    print('τ = {}'.format(tau,))
    alpha = 1. / 20.
    lambda_1, lambda_2 = rexponential(alpha, 2)
    print(lambda_1, lambda_2)

    # for days before tau, repr. the user's received sms count by sampling from a
    # Poisson(lambda_1), and for days after tau by sampling from Poisson(lambda_2)
    data = np.r_[rpoisson(lambda_1, tau), rpoisson(lambda_2, 80 - tau)]
    print(data)


    # plot artificial data set
    pyplot.bar(np.arange(80), data, color="#348ABD")
    pyplot.bar(tau - 1, data[tau - 1], color="r", label="user behaviour changed")
    pyplot.xlabel("time (days)")
    pyplot.ylabel("count of sms received")
    pyplot.xlim(0, 80)
    pyplot.legend()
コード例 #9
0
def main():
    tau = pm.rdiscrete_uniform(0, 80)
    print tau

    alpha = 1. / 20.
    lambda_1, lambda_2 = pm.rexponential(alpha, 2)
    print lambda_1, lambda_2

    data = np.r_[pm.rpoisson(lambda_1, tau), pm.rpoisson(lambda_2, 80 - tau)]

    def plot_artificial_sms_dataset():
        tau = pm.rdiscrete_uniform(0, 80)
        alpha = 1. / 20.
        lambda_1, lambda_2 = pm.rexponential(alpha, 2)
        data = np.r_[pm.rpoisson(lambda_1, tau), pm.rpoisson(lambda_2, 80 - tau)]
        plt.bar(np.arange(80), data, color="#348ABD")
        plt.bar(tau - 1, data[tau - 1], color="r", label="user behaviour changed")
        plt.xlim(0, 80)

    plt.title("More example of artificial datasets")
    for i in range(1, 5):
        plt.subplot(4, 1, i)
        plot_artificial_sms_dataset()
    plt.show()
import numpy as np
import pymc as pm
from matplotlib import pyplot as plt

tau = pm.rdiscrete_uniform(0, 80)
print(tau)

alpha = 1. / 20.
lambda_1, lambda_2 = pm.rexponential(alpha, 2)
print(lambda_1, lambda_2)

data = np.r_[pm.rpoisson(lambda_1, tau), pm.rpoisson(lambda_2, 80 - tau)]

plt.bar(np.arange(80), data, color="#348ABD")
plt.bar(tau - 1, data[tau - 1], color="r", label="user behaviour changed")
plt.xlabel("Time (days)")
plt.ylabel("count of text-msgs received")
plt.title("Artificial dataset")
plt.xlim(0, 80)
plt.legend();

plt.show()

コード例 #11
0
data = np.array( [10, 20, 15, 20, 49] )
obs = pm.Poisson( "obs", lambda_, value=data, observed=True )
obs.value

# 
# Model class - analyze variables as a single unit
model = pm.Model( [obs, lambda_, lambda_1, lambda_2, taus] )

#
# Creating new datasets
#
maxdays = 80
tau = pm.rdiscrete_uniform( 0, maxdays )

alpha = 1 / 20.
lambda_1, lambda_2 = pm.rexponential( alpha, 2 )

data = np.r_[
        pm.rpoisson( lambda_1, tau ),
        pm.rpoisson( lambda_2, maxdays-tau )]

plt.bar( np.arange(maxdays), data )
plt.bar( tau - 1, data[tau-1], color = 'r', label='change point' )
plt.xlabel( "Time (days)" )
plt.ylabel( "count" )
plt.title( "Artificial Data" )
plt.xlim( 0, 80 )
plt.legend()
plt.show()

def plot_artificial_sms_dataset():
コード例 #12
0
import numpy as np
import pymc as pm
from matplotlib import pyplot as plt

alpha = 1. / 20.
lambda_ = pm.rexponential(alpha)
print(lambda_)

data = np.r_[pm.rpoisson(lambda_, 80)]

np.savetxt("txtdata_sim.csv", data)

plt.bar(np.arange(80), data, color="#348ABD")
plt.xlabel("Time (days)")
plt.ylabel("count of text-msgs received")
plt.title("Artificial dataset")
plt.xlim(0, 80)

plt.show()