コード例 #1
0
 def test_aevb_empirical(self):
     _, model, _ = models.exponential_beta(n=2)
     x = model.x
     mu = theano.shared(x.init_value)
     rho = theano.shared(np.zeros_like(x.init_value))
     with model:
         inference = ADVI(local_rv={x: (mu, rho)})
         approx = inference.approx
         trace0 = approx.sample(10000)
         approx = Empirical(trace0, local_rv={x: (mu, rho)})
         trace1 = approx.sample(10000)
         approx.random(no_rand=True)
         approx.random_fn(no_rand=True)
     np.testing.assert_allclose(trace0['y'].mean(0),
                                trace1['y'].mean(0),
                                atol=0.02)
     np.testing.assert_allclose(trace0['y'].var(0),
                                trace1['y'].var(0),
                                atol=0.02)
     np.testing.assert_allclose(trace0['x'].mean(0),
                                trace1['x'].mean(0),
                                atol=0.02)
     np.testing.assert_allclose(trace0['x'].var(0),
                                trace1['x'].var(0),
                                atol=0.02)
コード例 #2
0
 def test_approximate(self):
     with models.multidimensional_model()[1]:
         meth = ADVI()
         fit(10, method=meth)
         with pytest.raises(KeyError):
             fit(10, method='undefined')
         with pytest.raises(TypeError):
             fit(10, method=1)
コード例 #3
0
def test_from_advi(another_simple_model):
    with another_simple_model:
        advi = ADVI()
        full_rank = FullRankADVI.from_advi(advi)
        full_rank.fit(20)
コード例 #4
0
def test_from_mean_field(another_simple_model):
    with another_simple_model:
        advi = ADVI()
        full_rank = FullRankADVI.from_mean_field(advi.approx)
        full_rank.fit(20)
コード例 #5
0
 def test_from_advi(self):
     with models.multidimensional_model()[1]:
         advi = ADVI()
         full_rank = FullRankADVI.from_advi(advi)
         full_rank.fit(20)
コード例 #6
0
 def test_from_mean_field(self):
     with models.multidimensional_model()[1]:
         advi = ADVI()
         full_rank = FullRankADVI.from_mean_field(advi.approx)
         full_rank.fit(20)
コード例 #7
0
            approx.randidx(None).eval()
            approx.randidx(1).eval()
            approx.random_fn(no_rand=True)
            approx.random_fn(no_rand=False)
            approx.histogram_logp.eval()

    def test_init_from_noize(self):
        with models.multidimensional_model()[1]:
            approx = Empirical.from_noise(100)
            assert approx.histogram.eval().shape == (100, 6)


_model = models.simple_model()[1]
with _model:
    pm.Potential('pot', tt.ones((10, 10)))
    _advi = ADVI()
    _fullrank_advi = FullRankADVI()
    _svgd = SVGD()


@pytest.mark.parametrize(
    ['method', 'kwargs', 'error'],
    [('undefined', dict(), KeyError), (1, dict(), TypeError),
     (_advi, dict(start={}), None), (_fullrank_advi, dict(), None),
     (_svgd, dict(), None), ('advi', dict(), None),
     ('advi->fullrank_advi', dict(frac=.1), None),
     ('advi->fullrank_advi', dict(frac=1), ValueError),
     ('fullrank_advi', dict(), None), ('svgd', dict(), None),
     ('svgd', dict(start={}), None),
     ('svgd', dict(local_rv={_model.free_RVs[0]: (0, 1)}), ValueError)])
def test_fit(method, kwargs, error):
コード例 #8
0
 def test_approximate(self):
     with models.multidimensional_model()[1]:
         meth = ADVI()
         fit(10, method=meth)
         self.assertRaises(KeyError, fit, 10, method='undefined')
         self.assertRaises(TypeError, fit, 10, method=1)