コード例 #1
0
    def group_model(self):

        with pm.Model() as gmodel:
            # uniform priors on h
            m = pm.DiscreteUniform('h', 0., 20.)
            std = pm.InverseGamma('s', 3., 0.5)
            mean = 2 * m + 1
            alphas = np.arange(1., 101., 5.)
            p = self.discreteNormal(alphas, mean, std)

            for i in range(self.nruns):
                hab_ten = pm.Categorical('h_{}'.format(i), p)

                alpha = tt.as_tensor_variable([hab_ten])
                probs_a, probs_r = self.inferrer(alpha)

                # use a DensityDist
                pm.Categorical('actions_{}'.format(i),
                               probs_a,
                               observed=self.actions[i])
                pm.Categorical('rewards_{}'.format(i),
                               probs_r,
                               observed=self.rewards[i])

        return gmodel
コード例 #2
0
def model_static(mcmc_in, alpha_prior=(1,1), beta_prior=(0,1), asymmetric_accuracy=True, hashtag_treatment="strong", draws=500, tune=500):
    '''
    alpha prior = (mu,sd)
    beta prior = (mu,sd)
    if z_obs is present then oracle
    '''
    model = pm.Model()

    with model:
        if hashtag_treatment=="strong":
            rho_prior = np.ones((2,2))
            rho_prior[1,1] = 49
            rho = pm.Dirichlet('rho', a=rho_prior, shape=(mcmc_in.K,2,2))
            z = pm.Categorical('z', 
                                p=rho[mcmc_in.kk_lkup, mcmc_in.flag_hashtag], 
                                observed=np.ma.masked_values(mcmc_in.z_obs, value=-999),
                                testval=mcmc_in.z_init,
                                shape=mcmc_in.N)
        if hashtag_treatment=="weak":
            rho_prior = np.ones((2,2))
            rho = pm.Dirichlet('rho', a=rho_prior, shape=(mcmc_in.K,2,2))
            z = pm.Categorical('z', 
                                p=rho[mcmc_in.kk_lkup, mcmc_in.flag_hashtag], 
                                observed=np.ma.masked_values(mcmc_in.z_obs, value=-999),
                                testval=mcmc_in.z_init,
                                shape=mcmc_in.N)
        elif hashtag_treatment=="oracle" or hashtag_treatment=="none":
            rho_prior = np.ones((1,2))
            rho = pm.Dirichlet('rho', a=rho_prior, shape=(mcmc_in.K,2))
            z = pm.Categorical('z', 
                                p=rho[mcmc_in.kk_lkup], 
                                observed=np.ma.masked_values(mcmc_in.z_obs, value=-999),
                                testval=mcmc_in.z_init,
                                shape=mcmc_in.N)

        beta_prime = pm.Normal('beta_prime', mu=beta_prior[0], sd=beta_prior[1], shape=mcmc_in.K)
        
        if asymmetric_accuracy==True:
            alpha = pm.Normal('alpha', mu=alpha_prior[0], sd=alpha_prior[1], shape=(mcmc_in.J,2))
            def logp(r, z=z, alpha=alpha, beta_prime=beta_prime):
                out = T.switch(T.eq(z[mcmc_in.ii],r),
                               -1*T.log(1+T.exp(-1*alpha[mcmc_in.jj,z[mcmc_in.ii]]*T.exp(beta_prime[mcmc_in.kk]))),
                               -1*alpha[mcmc_in.jj,z[mcmc_in.ii]]*T.exp(beta_prime[mcmc_in.kk]) - 1*T.log(1+T.exp(-1*alpha[mcmc_in.jj,z[mcmc_in.ii]]*T.exp(beta_prime[mcmc_in.kk])))
                               )
                return T.sum(out)            
        else:
            alpha = pm.Normal('alpha', mu=alpha_prior[0], sd=alpha_prior[1], shape=mcmc_in.J)
            def logp(r, z=z, alpha=alpha, beta_prime=beta_prime):
                out = T.switch(T.eq(z[mcmc_in.ii],r),
                               -1*T.log(1+T.exp(-1*alpha[mcmc_in.jj]*T.exp(beta_prime[mcmc_in.kk]))),
                               -1*alpha[mcmc_in.jj]*T.exp(beta_prime[mcmc_in.kk]) - 1*T.log(1+T.exp(-1*alpha[mcmc_in.jj]*T.exp(beta_prime[mcmc_in.kk])))
                               )
                return T.sum(out)
        r = pm.DensityDist('r', logp, observed=mcmc_in.r_obs, shape=len(mcmc_in.r_obs))

    with model:
        trace = pm.sample(draws=draws, tune=tune, chains=1)
        
    return trace
コード例 #3
0
def model_dawidskene(mcmc_in, alpha_prior, asymmetric_accuracy=True, hashtag_treatment="strong", draws=500, tune=500):
    '''
    alpha prior = (K,J,2) matrix of pseudocounts for dirichlet
    if z_obs is present then oracle
    '''
    model = pm.Model()

    with model:
        if hashtag_treatment=="strong":
            rho_prior = np.ones((2,2))
            rho_prior[1,1] = 49
            rho = pm.Dirichlet('rho', a=rho_prior, shape=(mcmc_in.K,2,2))
            z = pm.Categorical('z', 
                                p=rho[mcmc_in.kk_lkup, mcmc_in.flag_hashtag], 
                                observed=np.ma.masked_values(mcmc_in.z_obs, value=-999),
                                testval=mcmc_in.z_init,
                                shape=mcmc_in.N)
        elif hashtag_treatment=="weak":
            rho_prior = np.ones((2,2))
            rho = pm.Dirichlet('rho', a=rho_prior, shape=(mcmc_in.K,2,2))
            z = pm.Categorical('z', 
                                p=rho[mcmc_in.kk_lkup, mcmc_in.flag_hashtag], 
                                observed=np.ma.masked_values(mcmc_in.z_obs, value=-999),
                                testval=mcmc_in.z_init,
                                shape=mcmc_in.N)
        elif hashtag_treatment=="oracle" or hashtag_treatment=="none":
            rho_prior = np.ones((1,2))
            rho = pm.Dirichlet('rho', a=rho_prior, shape=(mcmc_in.K,2))
            z = pm.Categorical('z', 
                                p=rho[mcmc_in.kk_lkup], 
                                observed=np.ma.masked_values(mcmc_in.z_obs, value=-999),
                                testval=mcmc_in.z_init,
                                shape=mcmc_in.N)
        
        if asymmetric_accuracy==True:
            alpha = pm.Dirichlet("alpha", a=alpha_prior, shape=(2,mcmc_in.K,mcmc_in.J,2))
            def logp(r, z=z, alpha=alpha):
                out = T.switch(T.eq(z[mcmc_in.ii],r),
                               T.log(alpha[z[mcmc_in.ii],mcmc_in.kk,mcmc_in.jj,1]),
                               T.log(1-alpha[z[mcmc_in.ii],mcmc_in.kk,mcmc_in.jj,1])
                               )
                return T.sum(out)
        else:
            alpha = pm.Dirichlet("alpha", a=alpha_prior, shape=(mcmc_in.K,mcmc_in.J,2))
            def logp(r, z=z, alpha=alpha):
                out = T.switch(T.eq(z[mcmc_in.ii],r),
                               T.log(alpha[mcmc_in.kk,mcmc_in.jj,1]),
                               T.log(1-alpha[mcmc_in.kk,mcmc_in.jj,1])
                               )
                return T.sum(out)
        r = pm.DensityDist('r', logp, observed=mcmc_in.r_obs, shape=len(mcmc_in.r_obs))

    with model:
        step1 = pm.NUTS(vars=[rho, alpha])
        step2 = pm.CategoricalGibbsMetropolis(vars=[z.missing_values])
        trace = pm.sample(draws=draws, tune=tune, step=[step1, step2], chains=1)
        
    return trace
コード例 #4
0
ファイル: discrete.py プロジェクト: itu-square/privugger
 def pymc3_dist(self, name, hypers):
     p = self.p
     if(len(hypers) == 1):
         hyper_dist = hypers[0][0]
         hyper_name = hypers[0][1]
         p = hyper_dist.pymc3_dist(hyper_name, [])
         
     if(self.num_elements==-1):
         return pm.Categorical(name, p=p)
     else:
         return pm.Categorical(name, p=p, shape=self.num_elements)
コード例 #5
0
ファイル: test_mixture.py プロジェクト: xiaoxi0920/pymc3
    def test_2d_w(self):
        nd = self.nd
        npop = self.npop
        mus = self.mus
        size = 100
        with pm.Model() as model:
            m = pm.NormalMixture(
                "m",
                w=np.ones((nd, npop)) / npop,
                mu=mus,
                sigma=1e-5,
                comp_shape=(nd, npop),
                shape=nd,
            )
            z = pm.Categorical("z", p=np.ones(npop) / npop, shape=nd)
            mu = tt.as_tensor_variable([mus[i, z[i]] for i in range(nd)])
            latent_m = pm.Normal("latent_m", mu=mu, sigma=1e-5, shape=nd)

        m_val = m.random(size=size)
        latent_m_val = latent_m.random(size=size)
        assert m_val.shape == latent_m_val.shape
        # Test that each element in axis = -1 can come from independent
        # components
        assert not all(np.all(np.diff(m_val) < 1e-3, axis=-1))
        assert not all(np.all(np.diff(latent_m_val) < 1e-3, axis=-1))

        self.samples_from_same_distribution(m_val, latent_m_val)
        self.logp_matches(m, latent_m, z, npop, model=model)
コード例 #6
0
    def build_ann_conv(init):
        network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                            input_var=input_var)
        network = lasagne.layers.Conv2DLayer(
            network,
            num_filters=32,
            filter_size=(5, 5),
            nonlinearity=lasagne.nonlinearities.tanh,
            W=init)
        network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))
        network = lasagne.layers.Conv2DLayer(
            network,
            num_filters=32,
            filter_size=(5, 5),
            nonlinearity=lasagne.nonlinearities.tanh,
            W=init)
        network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))
        network = lasagne.layers.DenseLayer(
            network,
            num_units=256,
            nonlinearity=lasagne.nonlinearities.tanh,
            b=init,
            W=init)
        network = lasagne.layers.DenseLayer(
            network,
            num_units=10,
            nonlinearity=lasagne.nonlinearities.softmax,
            b=init,
            W=init)
        prediction = lasagne.layers.get_output(network)

        return pm.Categorical('out', prediction, observed=target_var)
コード例 #7
0
def exercise4():
    with pm.Model() as basic_model:
        probabilities = [0.3, 0.7, 0.95]

        likelihood_params = np.array(
            [np.divide(1, 3) * (1 + 2 * prob) for prob in probabilities])

        group = pm.Categorical('group', p=np.array([1, 1, 1]))

        p = pm.Deterministic('p', theano.shared(likelihood_params)[group])

        positive_answers = pm.Binomial('positive_answers',
                                       n=num_questions,
                                       p=p,
                                       observed=[7])

        trace = pm.sample(4000, progressbar=True)

        az.plot_trace(trace)

        plt.show()

        az.plot_posterior(trace)

        plt.show()

        az.summary(trace)
        return trace
コード例 #8
0
def sample_sticky_only(model_matrix, sample_kwargs=None):

    # load the data
    x_sc = model_matrix['x_sc']
    subj_idx = model_matrix['subj_idx']
    y = model_matrix['y']
    n_subj = model_matrix['n_subj']

    n, d = model_matrix['x_mu_kal'].shape
    if sample_kwargs is None:
        sample_kwargs = dict(draws=2000,
                             njobs=2,
                             tune=2000,
                             init='advi+adapt_diag')

    with pm.Model() as hier_sticky:

        mu_1 = pm.Normal('mu_beta_stick', mu=0., sd=100.)
        sigma_1 = pm.HalfCauchy('sigma_stick', beta=100)

        b_1 = pm.Normal('beta_sticky', mu=mu_1, sd=sigma_1, shape=n_subj)

        rho = tt.tile(tt.reshape(b_1[subj_idx], (n, 1)), d) * x_sc

        p_hat = softmax(rho)

        # Data likelihood
        yl = pm.Categorical('yl', p=p_hat, observed=y)

        # inference!
        trace_kal_scram = pm.sample(**sample_kwargs)

    return hier_sticky, trace_kal_scram
コード例 #9
0
def build_softmax_linear(X, y, force_softmax=False):
    """
    Sample from Bayesian Softmax Linear Regression
    """
    num_features = X.shape[1]
    num_classes = len(np.unique(y))
    logistic_regression = num_classes == 2
    Xt = theano.shared(X)
    
    if logistic_regression and not force_softmax:
        print('running logistic regression')
        with pm.Model() as model:
            W = pm.Normal('W', 0, sd=1e6, shape=num_features)
            b = pm.Flat('b')
            logit = Xt.dot(W) + b
            p = tt.nnet.sigmoid(logit)
            observed = pm.Bernoulli('obs', p=p, observed=y)
    else:
        with pm.Model() as model:
            W = pm.Normal('W', 0, sd=1e6, shape=(num_features, num_classes))
            b = pm.Flat('b', shape=num_classes)
            logit = Xt.dot(W) + b
            p = tt.nnet.softmax(logit)
            observed = pm.Categorical('obs', p=p, observed=y)
    return model
コード例 #10
0
def get_dirichlet_multinomial_dpmixture(X, params):
    n_doc, n_feat = X.shape
    n_comp = params['n_trunc']

    with pm.Model() as model:
        # sample P ~ DP(G0)
        beta = pm.Beta('beta',
                       1.,
                       params['dp_alpha'],
                       shape=n_comp)
        p_comp = pm.Deterministic(
            'p_comp',
            beta * tt.concatenate([[1], tt.extra_ops.cumprod(1 - beta)[:-1]]))
        pkw = pm.Dirichlet('pkw',
                           a=params['pkw_dirichlet_dist_alpha'] * np.ones(n_feat),
                           shape=(n_comp, n_feat))
        # sample X ~ P
        z = pm.Categorical('z',
                           p=p_comp,
                           shape=n_doc)
        x = pm.Multinomial('x',
                           n=X.sum(axis=1),
                           p=pkw[z],
                           observed=X)
    return model
コード例 #11
0
 def add_observations():
     with hierarchical_model.pymc_model:
         for i in range(hierarchical_model.n_groups):
             observations.append(
                 pm.Categorical(f'y_{i}',
                                levelProbs[:, i],
                                observed=hierarchical_model.y[i]))
コード例 #12
0
    def _define_model(self):

        self.model = pm.Model()
        with self.model:


            p = pm.Dirichlet('p', a=np.array([1., 1., 1.]), shape=self.number_of_hidden_states)
            p_min_potential = pm.Potential('p_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))

            means = pm.Normal('means', mu=[0, 0, 0], sd=2.0, shape=self.number_of_hidden_states)

            # break symmetry
            order_means_potential = pm.Potential('order_means_potential',
                                                 tt.switch(means[1] - means[0] < 0, -np.inf, 0)
                                                 + tt.switch(means[2] - means[1] < 0, -np.inf, 0))

            sd = pm.HalfCauchy('sd', beta=2, shape=self.number_of_hidden_states)
            category = pm.Categorical('category',
                                      p=p,
                                      shape=self.number_of_data)

            points = pm.Normal('obs',
                               mu=means[category],
                               sd=sd[category],
                               observed=self.data)
コード例 #13
0
def group_static_ucb_mes_model(X, explore_param_alpha=.01, explore_param_beta=.01,
                     temperature_alpha=1., temperature_beta=10., method_alpha=.001, maxk=10, samples=200):
    
    X = X.copy().transpose((2,1,3,0))
    nparticipants = X.shape[3]
    nchoices = X.shape[2]
    ntrials = X.shape[1]
    actions = theano.shared(X[-1])
    mean = theano.shared(X[0])
    var = theano.shared(X[1])
    mes = theano.shared(X[3])
    #mes = theano.shared(X[4])
    random_likelihood = theano.shared((1./nchoices)*np.ones(shape=(ntrials, maxk, nchoices, nparticipants)))
    with pm.Model() as model:
    
        explore_param = pm.Gamma('var_param', explore_param_alpha, explore_param_beta, shape=maxk)
        temperature = pm.Gamma('temperature', temperature_alpha, temperature_beta, shape=maxk)
        method = pm.Dirichlet('method', np.ones(3)*method_alpha, shape=(maxk,3))
        
        alpha = pm.Gamma('alpha', 10**-10., 10**-10.)
        beta = pm.Beta('beta', 1., alpha, shape=maxk)
        weights = pm.Deterministic('w', stick_breaking(beta))
        assignments = pm.Categorical('assignments', weights, shape=nparticipants)
    
        obs = pm.Potential('obs', sparse_group_static_ucb_mes_likelihood(actions, mean, var, mes, random_likelihood, method, explore_param, temperature, assignments, maxk))
        trace = pm.sample(samples, njobs=4)
        return trace
コード例 #14
0
def test_logistic_regression():
    data_X = np.array([[0, 0], [1, 0], [0, 1], [1, 1]])
    data_y = np.array([0, 1, 0, 1])

    with pymc3.Model() as model:
        X = pymc3.Normal(name='X', mu=1, sd=2, observed=data_X)
        alpha1_precision = pymc3.Uniform(name='alpha1_precision')
        alpha1 = pymc3.Normal(name='alpha1', mu=0, sd=1.0 / alpha1_precision)
        alpha2_precision = pymc3.Uniform(name='alpha2_precision')
        alpha2 = pymc3.Normal(name='alpha2', mu=0, sd=1.0 / alpha2_precision)
        beta1_precision = pymc3.Uniform(name='beta1_precision')
        beta2_precision = pymc3.Uniform(name='beta2_precision')
        beta1 = pymc3.Normal(name='beta1',
                             mu=0.0,
                             sd=1.0 / beta1_precision,
                             shape=2)
        beta2 = pymc3.Normal(name='beta2',
                             mu=0.0,
                             sd=1.0 / beta2_precision,
                             shape=2)
        v1 = alpha1 + beta1.dot(X.T)
        v2 = alpha2 + beta2.dot(X.T)
        denom = T.exp(v1) + T.exp(v2)
        sm1 = T.exp(v1) / denom
        sm2 = T.exp(v2) / denom
        v = T.stack(sm1, sm2)
        y = pymc3.Categorical(p=v,
                              name='y',
                              observed=data_y,
                              shape=len(data_y))

        step = pymc3.Metropolis()
        trace = pymc3.sample(1000, step)

    pass
コード例 #15
0
ファイル: search.py プロジェクト: ikarosilva/bayes
def run():
    data = sim()
    n_rooms = len(data)
    prior = [0.5, 0.25, 0.125, 0.0625, 0.03125]
    prior = [0.25, 0., 0.25, 0.25, 0.5]
    #p_find=np.array([0.25,0.25,0.25,0.25,0.25])
    #p_find=tt.cast([0.25,0.25,0.25,0.25,0.25],'int64')
    p_find = theano.shared(np.array([0.25, 0.25, 0.25, 0.25, 0.25]))
    tmp_find = theano.shared(np.array([0.25, 0.25, 0.25, 0.25, 0.25]))
    datas = theano.shared(data)
    print(data)
    with pm.Model() as model:
        target_loc = pm.Categorical('target_loc', p=prior)

        #Likelihood
        #room_search=pm.DiscreteUniform('room_search',1,n_rooms)
        #p = pm.math.switch(theano.tensor.eq(room_search,target_loc),p_find[target_loc], 0)
        tmp_find = tmp_find * 0
        tmp_find = tt.set_subtensor(tmp_find[target_loc], p_find[target_loc])
        #theano.printing.Print('tmp_find')(tmp_find)
        y = pm.Binomial('y',
                        p=tmp_find,
                        n=[5, 1., 1., 10., 10.],
                        observed=[0, 0, 0, 0, 0])
        trace = pm.sample(5000, cores=4)

    pm.plots.traceplot(trace, combined=True)

    #pm.traceplot(trace,
    #         combined=True,
    #         prior=[target_loc.distribution]);
    plt.show()
    print(pm.summary(trace))
コード例 #16
0
ファイル: test_mixture.py プロジェクト: xiaoxi0920/pymc3
    def test_1d_w(self):
        nd = self.nd
        npop = self.npop
        mus = self.mus
        size = 100
        with pm.Model() as model:
            m = pm.NormalMixture("m",
                                 w=np.ones(npop) / npop,
                                 mu=mus,
                                 sigma=1e-5,
                                 comp_shape=(nd, npop),
                                 shape=nd)
            z = pm.Categorical("z", p=np.ones(npop) / npop)
            latent_m = pm.Normal("latent_m",
                                 mu=mus[..., z],
                                 sigma=1e-5,
                                 shape=nd)

        m_val = m.random(size=size)
        latent_m_val = latent_m.random(size=size)
        assert m_val.shape == latent_m_val.shape
        # Test that each element in axis = -1 comes from the same mixture
        # component
        assert all(np.all(np.diff(m_val) < 1e-3, axis=-1))
        assert all(np.all(np.diff(latent_m_val) < 1e-3, axis=-1))

        self.samples_from_same_distribution(m_val, latent_m_val)
        self.logp_matches(m, latent_m, z, npop, model=model)
コード例 #17
0
def get_beta_bernoulli_dpmixture(X, params):
    n_doc, n_feat = X.shape
    n_comp = params['n_trunc']

    with pm.Model() as model:
        # sample P ~ DP(G0)
        beta = pm.Beta('beta',
                       1.,
                       params['dp_alpha'],
                       shape=n_comp)
        p_comp = pm.Deterministic(
            'p_comp',
            beta * tt.concatenate([[1], tt.extra_ops.cumprod(1 - beta)[:-1]]))
        pkw = pm.Beta('pkw',
                      alpha=params['pkw_beta_dist_alpha'],
                      beta=params['pkw_beta_dist_beta'],
                      shape=(n_comp, n_feat))
        # sample X ~ P
        z = pm.Categorical('z',
                           p=p_comp,
                           shape=n_doc)
        x = pm.Bernoulli('x',
                         p=pkw[z],
                         shape=(n_doc, n_feat),
                         observed=X)
    return model
コード例 #18
0
def Generate_theta_p(x, s, I, N, K, prod_f):
    #print(s,N,len(x))
    T = len(x)
    D = len(x[0])
    s = [one_hot(ss, N) for ss in s]
    # x = [[xt for _ in range(N)] for xt in x]
    x = np.array(x)
    s = np.array(s)

    model = pm.Model()
    with model:
        # Priors for unknown model parameters
        theta = pm.Normal("theta", mu=0, sigma=1, shape=(D, K)) / np.sqrt(
            K * D)
        p_list = []
        for t in range(T):
            #print(prod_f)
            #print(np.transpose(theta))
            wt = dot(dot(prod_f, transpose(theta)), x[t])
            swt = s[t] * wt
            sum_sw = sum(swt)
            p = exp(swt) / (1 + sum_sw)
            p0 = 1 / (1 + sum_sw)
            p_list.append(concatenate(([p0], p)))

        I_obs = pm.Categorical("I_obs", p=stack(p_list, axis=0), observed=I)

    with model:
        step = pm.Metropolis()
        trace1 = pm.sample(tune=2000, chains=1, step=step)

    return trace1["theta"][-1]
コード例 #19
0
    def fit(self, x, y, niters=500, **kwargs):
        """ Train model """

        self.classes = np.sort(np.unique(y))
        F = x.shape[1]
        K = np.unique(y).shape[0]

        with pm.Model() as linear_model:

            # Creating the model
            beta = pm.Normal('beta', mu=0, sd=10, shape=(F, K))
            alpha = pm.Normal('alpha', mu=0, sd=10, shape=K)
            mu = tt.dot(x, beta) + alpha
            p = pm.Deterministic('p', tt.nnet.softmax(mu))
            yl = pm.Categorical('yl', p=p, observed=y)

        with linear_model:
            # trace = pm.sample(niters, njobs=1, chains=1, verbose=False)  # No U-turn sampler
            trace = pm.sample(step=pm.Metropolis(),
                              draws=50000,
                              njobs=1,
                              tune=50)
            self.params['beta'] = trace['beta'][-niters:].copy(
            )  # storing last 500 samples from sampler
            self.params['alpha'] = trace['alpha'][-niters:].copy()
コード例 #20
0
def build_fc_nn(X, y, output='regression', hidden_dims=[NUM_HIDDEN]):
    """
    Build basic fully connected Bayesian neural network
    
    Args:
        X: data matrix
        y: targets
        output: one of SUPPORTED_OUTPUTS to specify the kind of outputs
        hidden_dims: integer list indicating the size of the hidden layers
    
    Returns:
        PyMC3 Bayesian neural network model
    """
    if output not in SUPPORTED_OUTPUTS:
        raise ValueError(
            'Unsupported neural network output: {}\nSupported outputs: {}'.
            format(output, SUPPORTED_OUTPUTS))
    if 'regression' == output:
        num_output_units = 1
    elif 'classification' == output:
        num_output_units = len(np.unique(y))

    floatX = theano.config.floatX
    Xt = theano.shared(X)
    num_features = X.shape[1]
    layer_dims = [num_features] + hidden_dims

    # initialize weights (switch to Xavier initiallization?)
    Ws = []
    for i in range(len(layer_dims) - 1):
        in_dim = layer_dims[i]
        out_dim = layer_dims[i + 1]
        Ws.append(np.random.randn(in_dim, out_dim).astype(floatX))

    with pm.Model() as model_nn:
        for i in range(len(Ws)):
            # priors
            W_i = pm.Normal('W' + str(i),
                            0,
                            sd=WEIGHT_SD,
                            shape=Ws[i].shape,
                            testval=Ws[i])
            b_i = pm.Flat('b' + str(i), shape=Ws[i].shape[1])

            # deterministic transformations
            in_layer = a_i if i > 0 else Xt
            z_i = in_layer.dot(W_i) + b_i
            a_i = pm.math.tanh(z_i)

        # format output and plug in data
        # uses pre-activation of last layer
        if 'regression' == output:
            observed = pm.Normal('obs', mu=z_i, sd=LIKELIHOOD_SD, observed=y)
        elif 'classification' == output:
            p = tt.nnet.softmax(z_i)
            observed = pm.Categorical('obs', p=p, observed=y)

    return model_nn
コード例 #21
0
def bms(L, hdi_prob=0.95, **sample_kwargs):
    """This function computes the exceedance probabilities (xp)
    and expected relative frequencies (r) from an array of log-evidences.

    Args:
        L (numpy.ndarray): Array of model log-evidences (higher is better fit).
            Array shape should be (K models; N subjects)

        **sample_kwargs: Additional arguments to the pymc.sample function.
            Currently `cores=1` seems to be necessary.

    Returns:
        dict: Dictionary with values xp and r.

    Reference:
        Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. Neuroimage, 46(4), 1004-1017.
    """

    K, N = L.shape

    with pm.Model() as bms:

        def lookup_L(L, N):
            """This function looks up the log-evidences for all N subjects,
            given the current model labels m.
            """
            return L[tt.cast(m, dtype="int32"),
                     tt.cast(tt.arange(N), dtype="int32")]

        # Priors
        alpha = pm.Uniform("alpha", 0, N, shape=K, testval=np.ones(K))

        # Model
        r = pm.Dirichlet("r", a=alpha, testval=np.ones(K) / K)
        m = pm.Categorical("m", p=r, shape=N, testval=0)

        # Look up log evidence
        ll = pm.DensityDist("ll", logp=lookup_L, observed=dict(L=L, N=N))

        # Sample
        inferencedata = pm.sample(return_inferencedata=True, **sample_kwargs)

    # Build results
    result = {}
    result["summary"] = az.summary(inferencedata,
                                   hdi_prob=hdi_prob,
                                   var_names=["alpha", "r"])
    result["xp"] = np.array([
        np.mean(inferencedata.posterior["r"].data[:, :, k] ==
                inferencedata.posterior["r"].data.max(axis=-1))
        for k in range(K)
    ])
    r_unscaled = np.array([
        np.mean(inferencedata.posterior["r"].data[:, :, k]) for k in range(K)
    ])
    result["r"] = r_unscaled / r_unscaled.sum()

    return result
コード例 #22
0
def test_FFBSStep():

    with pm.Model(), pytest.raises(ValueError):
        P_rv = np.eye(2)[None, ...]
        S_rv = DiscreteMarkovChain("S_t", P_rv, np.r_[1.0, 0.0], shape=10)
        S_2_rv = DiscreteMarkovChain("S_2_t", P_rv, np.r_[0.0, 1.0], shape=10)
        PoissonZeroProcess("Y_t",
                           9.0,
                           S_rv + S_2_rv,
                           observed=np.random.poisson(9.0, size=10))
        # Only one variable can be sampled by this step method
        ffbs = FFBSStep([S_rv, S_2_rv])

    with pm.Model(), pytest.raises(TypeError):
        S_rv = pm.Categorical("S_t", np.r_[1.0, 0.0], shape=10)
        PoissonZeroProcess("Y_t",
                           9.0,
                           S_rv,
                           observed=np.random.poisson(9.0, size=10))
        # Only `DiscreteMarkovChains` can be sampled with this step method
        ffbs = FFBSStep([S_rv])

    with pm.Model(), pytest.raises(TypeError):
        P_rv = np.eye(2)[None, ...]
        S_rv = DiscreteMarkovChain("S_t", P_rv, np.r_[1.0, 0.0], shape=10)
        pm.Poisson("Y_t", S_rv, observed=np.random.poisson(9.0, size=10))
        # Only `SwitchingProcess`es can used as dependent variables
        ffbs = FFBSStep([S_rv])

    np.random.seed(2032)

    poiszero_sim, _ = simulate_poiszero_hmm(30, 150)
    y_test = poiszero_sim["Y_t"]

    with pm.Model() as test_model:
        p_0_rv = pm.Dirichlet("p_0", np.r_[1, 1], shape=2)
        p_1_rv = pm.Dirichlet("p_1", np.r_[1, 1], shape=2)

        P_tt = at.stack([p_0_rv, p_1_rv])
        P_rv = pm.Deterministic("P_tt", at.shape_padleft(P_tt))

        pi_0_tt = compute_steady_state(P_rv)

        S_rv = DiscreteMarkovChain("S_t", P_rv, pi_0_tt, shape=y_test.shape[0])

        PoissonZeroProcess("Y_t", 9.0, S_rv, observed=y_test)

    with test_model:
        ffbs = FFBSStep([S_rv])

    test_point = test_model.test_point.copy()
    test_point["p_0_stickbreaking__"] = poiszero_sim["p_0_stickbreaking__"]
    test_point["p_1_stickbreaking__"] = poiszero_sim["p_1_stickbreaking__"]

    res = ffbs.step(test_point)

    assert np.array_equal(res["S_t"], poiszero_sim["S_t"])
コード例 #23
0
ファイル: test_pymc3.py プロジェクト: EJHortala/symbolic-pymc
def test_pymc3_convert_dists():
    """Just a basic check that all PyMC3 RVs will convert to and from Theano RVs."""
    tt.config.compute_test_value = "ignore"
    theano.config.cxx = ""

    with pm.Model() as model:
        norm_rv = pm.Normal("norm_rv", 0.0, 1.0, observed=1.0)
        mvnorm_rv = pm.MvNormal("mvnorm_rv",
                                np.r_[0.0],
                                np.c_[1.0],
                                shape=1,
                                observed=np.r_[1.0])
        cauchy_rv = pm.Cauchy("cauchy_rv", 0.0, 1.0, observed=1.0)
        halfcauchy_rv = pm.HalfCauchy("halfcauchy_rv", 1.0, observed=1.0)
        uniform_rv = pm.Uniform("uniform_rv", observed=1.0)
        gamma_rv = pm.Gamma("gamma_rv", 1.0, 1.0, observed=1.0)
        invgamma_rv = pm.InverseGamma("invgamma_rv", 1.0, 1.0, observed=1.0)
        exp_rv = pm.Exponential("exp_rv", 1.0, observed=1.0)
        halfnormal_rv = pm.HalfNormal("halfnormal_rv", 1.0, observed=1.0)
        beta_rv = pm.Beta("beta_rv", 2.0, 2.0, observed=1.0)
        binomial_rv = pm.Binomial("binomial_rv", 10, 0.5, observed=5)
        dirichlet_rv = pm.Dirichlet("dirichlet_rv",
                                    np.r_[0.1, 0.1],
                                    observed=np.r_[0.1, 0.1])
        poisson_rv = pm.Poisson("poisson_rv", 10, observed=5)
        bernoulli_rv = pm.Bernoulli("bernoulli_rv", 0.5, observed=0)
        betabinomial_rv = pm.BetaBinomial("betabinomial_rv",
                                          0.1,
                                          0.1,
                                          10,
                                          observed=5)
        categorical_rv = pm.Categorical("categorical_rv",
                                        np.r_[0.5, 0.5],
                                        observed=1)
        multinomial_rv = pm.Multinomial("multinomial_rv",
                                        5,
                                        np.r_[0.5, 0.5],
                                        observed=np.r_[2])

    # Convert to a Theano `FunctionGraph`
    fgraph = model_graph(model)

    rvs_by_name = {
        n.owner.inputs[1].name: n.owner.inputs[1]
        for n in fgraph.outputs
    }

    pymc_rv_names = {n.name for n in model.observed_RVs}
    assert all(
        isinstance(rvs_by_name[n].owner.op, RandomVariable)
        for n in pymc_rv_names)

    # Now, convert back to a PyMC3 model
    pymc_model = graph_model(fgraph)

    new_pymc_rv_names = {n.name for n in pymc_model.observed_RVs}
    pymc_rv_names == new_pymc_rv_names
コード例 #24
0
	def _create_model(self):

		with pm.Model() as self.model:

			# getting the location primers
			for layer_index in range(self.num_layers):
				setattr(self, 'w%d' % layer_index, self.__get_weights(layer_index, self.weight_shapes[layer_index]))
				setattr(self, 'b%d' % layer_index, self.__get_biases(layer_index, self.bias_shapes[layer_index]))

				if layer_index == 0:
					fc = pm.Deterministic('fc%d' % layer_index, pm.math.tanh(pm.math.dot(self.network_input, self.weight(layer_index)) + self.bias(layer_index)))
					setattr(self, 'fc%d' % layer_index, fc)
				elif 0 < layer_index < self.num_layers - 1:
					fc = pm.Deterministic('fc%d' % layer_index, pm.math.tanh(pm.math.dot(getattr(self, 'fc%d' % (layer_index - 1)), self.weight(layer_index)) + self.bias(layer_index)))
					setattr(self, 'fc%d' % layer_index, fc)
				else:
					self._loc = pm.Deterministic('bnn_out', pm.math.sigmoid(pm.math.dot(getattr(self, 'fc%d' % (layer_index - 1)), self.weight(layer_index)) + self.bias(layer_index)) )	


			# getting the precision / standard deviation / variance
			self.tau_rescaling = np.zeros((self.num_obs, self.network_input.shape[1]))
			for obs_index in range(self.num_obs):
				self.tau_rescaling[obs_index] += self.var_e_ranges
			self.tau_rescaling = self.tau_rescaling**2

			tau        = pm.Gamma('tau', self.num_obs**2, 1., shape = (self.num_obs, self.network_input.shape[1]))
			self.tau   = tau / self.tau_rescaling
			self.scale = pm.Deterministic('scale', 1. / pm.math.sqrt(self.tau))


			# learn the floats
			self.loc        = pm.Deterministic('loc', (self.upper_rescalings - self.lower_rescalings) * self._loc + self.lower_rescalings)
			self.out_floats = pm.Normal('out_floats', self.loc[:, self.floats], tau = self.tau[:, self.floats], observed = self.network_output[:, self._floats])


			# learn the integers
			self.int_scale = pm.Deterministic('int_scale', 1. * self.scale)
			self.out_ints  = DiscreteLaplace('out_ints', loc = self.loc[:, self.ints], scale = self.int_scale[:, self.ints], observed = self.network_output[:, self._ints])


			# learn the categories
			dist_counter, cat_var_index = 0, 0
			
			self.alpha = pm.Deterministic('alpha', (self.loc + 1.) * self.scale)
			self.num_cats = 0
			for var_e_index, var_e_type in enumerate(self.var_e_types):
				if var_e_type == 'categorical' and self.var_e_begin[var_e_index] == var_e_index:
					begin, end  = self.var_e_begin[var_e_index], self.var_e_end[var_e_index]
					var_e_name  = self.var_e_names[var_e_index]
					param_index = np.argwhere(self.var_p_names == var_e_name)[0, 0]
					self.param_index = param_index

					out_dirichlet = pm.Dirichlet('dirich_%d' % dist_counter, a = self.alpha[:, begin : end], shape = (self.num_obs, int(end - begin)) )
					out_cats      = pm.Categorical('out_cats_%d' % dist_counter, p = out_dirichlet, observed = self.network_output[:, param_index])
					self.num_cats += 1
					dist_counter += 1
コード例 #25
0
def sample_heir_rbf_kal(model_matrix, sample_kwargs=None):

    # load the data
    x_mu_rbf = model_matrix['x_mu_rbf']
    x_sd_rbf = model_matrix['x_sd_rbf']
    x_mu_kal = model_matrix['x_mu_kal']
    x_sd_kal = model_matrix['x_sd_kal']
    x_sc = model_matrix['x_sc']
    subj_idx = model_matrix['subj_idx']
    y = model_matrix['y']
    n_subj = model_matrix['n_subj']

    n, d = x_mu_rbf.shape
    if sample_kwargs is None:
        sample_kwargs = dict(draws=2000,
                             njobs=2,
                             tune=2000,
                             init='advi+adapt_diag')

    with pm.Model() as hier_rbf_kal:

        mu_1 = pm.Normal('mu_beta_rbf_mean', mu=0., sd=100.)
        mu_2 = pm.Normal('mu_beta_rbf_stdv', mu=0., sd=100.)
        mu_3 = pm.Normal('mu_beta_kal_mean', mu=0., sd=100.)
        mu_4 = pm.Normal('mu_beta_kal_stdv', mu=0., sd=100.)
        mu_5 = pm.Normal('mu_beta_stick', mu=0., sd=100.)

        sigma_1 = pm.HalfCauchy('sigma_rbf_means', beta=100)
        sigma_2 = pm.HalfCauchy('sigma_rbf_stdev', beta=100)
        sigma_3 = pm.HalfCauchy('sigma_kal_means', beta=100)
        sigma_4 = pm.HalfCauchy('sigma_kal_stdev', beta=100)
        sigma_5 = pm.HalfCauchy('sigma_stick', beta=100)

        b_1 = pm.Normal('beta_rbf_mu', mu=mu_1, sd=sigma_1, shape=n_subj)
        b_2 = pm.Normal('beta_rbf_std', mu=mu_2, sd=sigma_2, shape=n_subj)
        b_3 = pm.Normal('beta_kal_mu', mu=mu_3, sd=sigma_3, shape=n_subj)
        b_4 = pm.Normal('beta_kal_std', mu=mu_4, sd=sigma_4, shape=n_subj)
        b_5 = pm.Normal('beta_sc', mu=mu_5, sd=sigma_5, shape=n_subj)

        rho = \
            tt.tile(tt.reshape(b_1[subj_idx], (n, 1)), d) * x_mu_rbf + \
            tt.tile(tt.reshape(b_2[subj_idx], (n, 1)), d) * x_sd_rbf + \
            tt.tile(tt.reshape(b_3[subj_idx], (n, 1)), d) * x_mu_kal + \
            tt.tile(tt.reshape(b_4[subj_idx], (n, 1)), d) * x_sd_kal + \
            tt.tile(tt.reshape(b_5[subj_idx], (n, 1)), d) * x_sc

        p_hat = softmax(rho)

        # Data likelihood
        yl = pm.Categorical('yl', p=p_hat, observed=y)

        # inference!
        trace_gprbf_kal = pm.sample(**sample_kwargs)

    return hier_rbf_kal, trace_gprbf_kal
コード例 #26
0
def test_discrete_not_allowed():
    mu_true = np.array([-2, 0, 2])
    z_true = np.random.randint(len(mu_true), size=100)
    y = np.random.normal(mu_true[z_true], np.ones_like(z_true))

    with pm.Model():
        mu = pm.Normal('mu', mu=0, sigma=10, shape=3)
        z = pm.Categorical('z', p=tt.ones(3) / 3, shape=len(y))
        pm.Normal('y_obs', mu=mu[z], sigma=1., observed=y)
        with pytest.raises(opvi.ParametrizationError):
            pm.fit(n=1)  # fails
コード例 #27
0
    def build_model(self, n=None, name='archimedian_model'):
        with pm.Model(name=name) as self.model:
            if n is None:
                # one n per galaxy, or per arm?
                self.n_choice = pm.Categorical('n_choice', [1, 1, 0, 1, 1],
                                               testval=1,
                                               shape=len(self.galaxies))
                self.n = pm.Deterministic('n', self.n_choice - 2)
                self.chirality_correction = tt.switch(self.n < 0, -1, 1)
            else:
                msg = 'Parameter $n$ must be a nonzero float'
                try:
                    n = float(n)
                except ValueError:
                    pass
                finally:
                    assert isinstance(n, float) and n != 0, msg

                self.n_choice = None
                self.n = pm.Deterministic('n',
                                          np.repeat(n, len(self.galaxies)))

            self.chirality_correction = tt.switch(self.n < 0, -1, 1)
            self.a = pm.HalfCauchy('a', beta=1, testval=1, shape=self.n_arms)
            self.psi = pm.Normal(
                'psi',
                mu=0,
                sigma=1,
                testval=0.1,
                shape=self.n_arms,
            )
            self.sigma_r = pm.InverseGamma('sigma_r', alpha=2, beta=0.5)
            # Unfortunately, as we need to reverse the theta points for arms
            # with n < 1, and rotate all arms to start at theta = 0,
            # we need to do some model-mangling
            self.t_mins = Series({
                i: self.data.query('arm_index == @i')['theta'].min()
                for i in np.unique(self.data['arm_index'])
            })
            r_stack = [
                self.a[i] * tt.power(
                    (self.data.query('arm_index == @i')['theta'].values -
                     self.t_mins[i] + self.psi[i]),
                    1 / self.n[int(self.gal_arm_map[i])])
                [::self.chirality_correction[int(self.gal_arm_map[i])]]
                for i in np.unique(self.data['arm_index'])
            ]
            r = pm.Deterministic('r', tt.concatenate(r_stack))
            self.likelihood = pm.StudentT(
                'Likelihood',
                mu=r,
                sigma=self.sigma_r,
                observed=self.data['r'].values,
            )
コード例 #28
0
    def single_model(self, idx):

        minimum = 0.
        maximum = 8.
        sample_space = np.arange(minimum, maximum + 1, 1)
        sample_space = 1. / 10**(sample_space / 4.)

        with pm.Model() as smodel:
            # uniform priors on h
            hab_ten = pm.DiscreteUniform('h', 0., 8.)

            # convert to a tensor
            alpha = tt.as_tensor_variable([10**(hab_ten / 4.)])
            probs_a, probs_r = self.inferrer(alpha)

            # use a DensityDist
            pm.Categorical('actions', probs_a, observed=self.actions[idx])
            pm.Categorical('rewards', probs_r, observed=self.rewards[idx])

        return smodel, sample_space
コード例 #29
0
    def test_bernoulli_process(self):
        """Testing the Bridge Sampler with a Beta-Bernoulli-Process model"""

        # prior parameters
        alpha = np.random.gamma(1.0, 2.0)
        beta = np.random.gamma(1.0, 2.0)
        n = 100

        draws = 10000
        tune = 1000

        print("Testing with alpha = ", alpha, "and beta = ", beta)

        # random data
        p0 = np.random.random()
        expected_error = np.sqrt(p0 * (1 - p0) / n)  # reasonable approximation

        observations = (np.random.random(n) <= p0).astype("int")

        with pm.Model() as BernoulliBeta:

            theta = pm.Beta('pspike', alpha=alpha, beta=beta)
            obs = pm.Categorical('obs',
                                 p=pm.math.stack([theta, 1.0 - theta]),
                                 observed=observations)
            trace = pm.sample(draws=draws, tune=tune)

        # calculate exact marginal likelihood
        n = len(observations)
        k = sum(observations)
        print(n, k)
        exact_log_marg_ll = spf.betaln(alpha + k, beta +
                                       (n - k)) - spf.betaln(alpha, beta)

        # estimate with bridge sampling
        logml_dict = marginal_llk(trace, model=BernoulliBeta, maxiter=10000)
        expected_p = 1.0 - trace["pspike"].mean()

        # should be true in 95% of the runs
        self.assertTrue(
            np.abs(expected_p - p0) < 2 * expected_error,
            msg=
            "Estimated probability is {0:5.3f}, exact is {1:5.3f}, estimated standard deviation is {2:5.3f}. Is this OK?"
            .format(expected_p, p0, expected_error))

        estimated_log_marg_ll = logml_dict["logml"]

        # 3.2 corresponds to a bayes factor of 'Not worth more than a bare mention'
        self.assertTrue(
            np.abs(estimated_log_marg_ll - exact_log_marg_ll) < np.log(3.2),
            msg=
            "Estimated marginal log likelihood {0:2.5f}, exact marginal log likelihood {1:2.5f}. Is this OK?"
            .format(estimated_log_marg_ll, exact_log_marg_ll))
コード例 #30
0
ファイル: shlm.py プロジェクト: dirmeier/shm
    def _set_clustering_model(self):
        with pm.Model() as model:
            logger.info("Using {} cluster centers".format(self.n_states))
            p = pm.Dirichlet("p",
                             a=np.repeat(1, self.n_states),
                             shape=self.n_states)
            pm.Potential("p_pot", var=tt.switch(tt.min(p) < 0.05, -np.inf, 0.))
            z = pm.Categorical("z", p=p, shape=self.n_genes)
        tau_g, mean_g, gamma = self._gamma_mix(model, z)
        param_hlm = self._hlm(model, gamma)

        self._set_steps(model, z, p, tau_g, mean_g, gamma, *param_hlm)
        return self