コード例 #1
0
def read_bin_file(file_name):
    """ read sinogram from binary file

    Return sinogram np.array produced by reading an Accuray sinogram
    BIN file with the provided file name.

    Parameters
    ----------
    file_name : str
        long file name of csv file

    Returns
    -------
    sinogram : np.array

    Notes
    -----
    BIN files are sinograms stored in binary format used in
    Tomotherapy calibration plans.

    """

    leaf_open_times = np.fromfile(file_name, dtype=float, count=-1, sep="")
    num_leaves = 64
    num_projections = int(len(leaf_open_times) / num_leaves)
    sinogram = np.reshape(leaf_open_times, (num_projections, num_leaves))

    return sinogram
コード例 #2
0
ファイル: mask.py プロジェクト: lc52520/pymedphys
def reduce_expanded_mask(expanded_mask, img_size, expansion):
    return np.mean(
        np.mean(
            np.reshape(expanded_mask, (img_size, expansion, img_size, expansion)),
            axis=1,
        ),
        axis=2,
    )
コード例 #3
0
def get_interpolated_dose(coords_grid, dose_interpolation):
    coords_grid_ij_indexing = np.array([
        np.ravel(coords_grid[:, :, 1]),
        np.ravel(coords_grid[:, :, 0]),
        np.ravel(coords_grid[:, :, 2]),
    ]).T

    interpolated_dose = dose_interpolation(coords_grid_ij_indexing)
    coords_dim = np.shape(coords_grid)
    interpolated_dose = np.reshape(interpolated_dose,
                                   (coords_dim[0], coords_dim[1]))

    return interpolated_dose
コード例 #4
0
def gamma_filter_brute_force(axes_reference,
                             dose_reference,
                             axes_evaluation,
                             dose_evaluation,
                             distance_mm_threshold,
                             dose_threshold,
                             lower_dose_cutoff=0,
                             **_):

    xx_ref, yy_ref, zz_ref = np.meshgrid(*axes_reference, indexing="ij")
    gamma_array = np.ones_like(dose_evaluation).astype(np.float) * np.nan

    mesh_index = np.meshgrid(
        *[np.arange(len(coord_eval)) for coord_eval in axes_evaluation])

    eval_index = np.reshape(np.array(mesh_index), (3, -1))
    run_index = np.arange(np.shape(eval_index)[1])
    np.random.shuffle(run_index)

    sys.stdout.write("    ")

    for counter, point_index in enumerate(run_index):
        i, j, k = eval_index[:, point_index]
        eval_x = axes_evaluation[0][i]
        eval_y = axes_evaluation[1][j]
        eval_z = axes_evaluation[2][k]

        if dose_evaluation[i, j, k] < lower_dose_cutoff:
            continue

        distance = np.sqrt((xx_ref - eval_x)**2 + (yy_ref - eval_y)**2 +
                           (zz_ref - eval_z)**2)

        dose_diff = dose_evaluation[i, j, k] - dose_reference

        gamma = np.min(
            np.sqrt((dose_diff / dose_threshold)**2 +
                    (distance / distance_mm_threshold)**2))

        gamma_array[i, j, k] = gamma

        if counter // 30 == counter / 30:
            percent_pass = str(
                np.round(calculate_pass_rate(gamma_array), decimals=1))
            sys.stdout.write(
                "\rPercent Pass: {0}% | Percent Complete: {1:.2f}%".format(
                    percent_pass, counter / np.shape(eval_index)[1] * 100))
            sys.stdout.flush()

    return calculate_pass_rate(gamma_array)
コード例 #5
0
def create_point_combination(coords):
    mesh_index = np.meshgrid(*coords)
    point_combination = np.reshape(np.array(mesh_index), (3, -1))

    return point_combination
コード例 #6
0
ファイル: shell.py プロジェクト: lc52520/pymedphys
def gamma_shell(
    axes_reference,
    dose_reference,
    axes_evaluation,
    dose_evaluation,
    dose_percent_threshold,
    distance_mm_threshold,
    lower_percent_dose_cutoff=20,
    interp_fraction=10,
    max_gamma=None,
    local_gamma=False,
    global_normalisation=None,
    skip_once_passed=False,
    random_subset=None,
    ram_available=DEFAULT_RAM,
    quiet=False,
):
    """Compare two dose grids with the gamma index.

    It computes 1, 2, or 3 dimensional gamma with arbitrary gird sizes while
    interpolating on the fly. This function makes use of some of the ideas
    presented within <http://dx.doi.org/10.1118/1.2721657>.

    Parameters
    ----------
    axes_reference : tuple
        The reference coordinates.
    dose_reference : np.array
        The reference dose grid. Each point in the reference grid becomes the
        centre of a Gamma ellipsoid. For each point of the reference, nearby
        evaluation points are searched at increasing distances.
    axes_evaluation : tuple
        The evaluation coordinates.
    dose_evaluation : np.array
        The evaluation dose grid. Evaluation here is defined as the grid which
        is interpolated and searched over at increasing distances away from
        each reference point.
    dose_percent_threshold : float
        The percent dose threshold
    distance_mm_threshold : float
        The gamma distance threshold. Units must
        match of the coordinates given.
    lower_percent_dose_cutoff : float, optional
        The percent lower dose cutoff below which gamma will not be calculated.
        This is only applied to the reference grid.
    interp_fraction : float, optional
        The fraction which gamma distance threshold is divided into for
        interpolation. Defaults to 10 as recommended within
        <http://dx.doi.org/10.1118/1.2721657>. If a 3 mm distance threshold is chosen
        this default value would mean that the evaluation grid is interpolated at
        a step size of 0.3 mm.
    max_gamma : float, optional
        The maximum gamma searched for. This can be used to speed up
        calculation, once a search distance is reached that would give gamma
        values larger than this parameter, the search stops. Defaults to :obj:`np.inf`
    local_gamma
        Designates local gamma should be used instead of global. Defaults to
        False.
    global_normalisation : float, optional
        The dose normalisation value that the percent inputs calculate from.
        Defaults to the maximum value of :obj:`dose_reference`.
    random_subset : int, optional
        Used to only calculate a random subset of the reference grid. The
        number chosen is how many random points to calculate.
    ram_available : int, optional
        The number of bytes of RAM available for use by this function. Defaults
        to 0.8 times your total RAM as determined by psutil.
    quiet : bool, optional
        Used to quiet informational printing during function usage. Defaults to
        False.

    Returns
    -------
    gamma
        The array of gamma values the same shape as that
        given by the reference coordinates and dose.
    """

    if max_gamma is None:
        max_gamma = np.inf

    options = GammaInternalFixedOptions.from_user_inputs(
        axes_reference,
        dose_reference,
        axes_evaluation,
        dose_evaluation,
        dose_percent_threshold,
        distance_mm_threshold,
        lower_percent_dose_cutoff,
        interp_fraction,
        max_gamma,
        local_gamma,
        global_normalisation,
        skip_once_passed,
        random_subset,
        ram_available,
        quiet,
    )

    if not options.quiet:
        if options.local_gamma:
            print("Calcing using local normalisation point for gamma")
        else:
            print("Calcing using global normalisation point for gamma")
        print("Global normalisation set to {}".format(
            options.global_normalisation))
        print("Global dose threshold set to {} ({}% of normalisation)".format(
            options.global_dose_threshold, options.dose_percent_threshold))
        print("Distance threshold set to {}".format(
            options.distance_mm_threshold))
        print("Lower dose cutoff set to {} ({}% of normalisation)".format(
            options.lower_dose_cutoff, lower_percent_dose_cutoff))
        print("")

    current_gamma = gamma_loop(options)

    gamma = {}
    for i, dose_threshold in enumerate(options.dose_percent_threshold):
        for j, distance_threshold in enumerate(options.distance_mm_threshold):
            key = (dose_threshold, distance_threshold)

            gamma_temp = current_gamma[:, i, j]
            gamma_temp = np.reshape(gamma_temp, np.shape(dose_reference))
            gamma_temp[np.isinf(gamma_temp)] = np.nan

            with np.errstate(invalid="ignore"):
                gamma_greater_than_ref = gamma_temp > max_gamma
                gamma_temp[gamma_greater_than_ref] = max_gamma

            gamma[key] = gamma_temp

    if not options.quiet:
        print("\nComplete!")

    if len(gamma.keys()) == 1:
        gamma = next(iter(gamma.values()))

    return gamma