コード例 #1
0
ファイル: Pointsurface.py プロジェクト: YQ161916/pymethods
 def _align_normals(self) -> None:
     normals = self.point_basis[:, :, -1].T
     centered_points = self - math.mean(self)
     sum_pos = np.sum(math.l2_norm(centered_points + normals))
     sum_neg = np.sum(math.l2_norm(centered_points - normals))
     if sum_neg > sum_pos:
         self.point_basis *= -1
     if not self.external:
         self.point_basis *= -1
コード例 #2
0
ファイル: Vector.py プロジェクト: YQ161916/pymethods
    def direct_vector(self, vector: np.ndarray) -> np.ndarray:
        """direct_vector
        """
        self_project = math.vector_project(self, vector)

        pos_dist = math.l2_norm(vector - self_project)
        neg_dist = math.l2_norm(-vector - self_project)

        if neg_dist < pos_dist:
            return -1 * self
        else:
            return self
コード例 #3
0
    def _sorMainDistalToProximal(self):
        am, bm = self._mainCenterline[:, 0], self._mainCenterline[:, -1]
        ab, bb = self._bifurCenterline[:, 0], self._bifurCenterline[:, -1]

        shortestDistanceStart = min(
            math.l2_norm(am-ab),
            math.l2_norm(am-bb)
        )
        shortestDistanceEnd = min(
            math.l2_norm(bm-ab),
            math.l2_norm(bm-bb)
        )

        if shortestDistanceStart < shortestDistanceEnd:
            self._mainCenterline = Curve(np.flipud(self._mainCenterline.T).T)
コード例 #4
0
ファイル: Curve.py プロジェクト: YQ161916/pymethods
    def oriented_transport_frames(self, origin, jVector, return_index=True):

        origin_id = np.argmin(math.l2_norm(
            self - arrays.ColumnVector(origin)
        ))

        transportFrames = self.transport_frames()
        ijk_self = arrays.Basis(transportFrames[origin_id])
        jVector = arrays.ColumnVector(jVector).hat
        projected = jVector.project_to_plane(ijk_self[:, -1])
        j_new = math.normalize(
            projected.change_reference_frame(ijk_self)).squeeze()
        z_new = np.array([0, 0, 1])
        ijk_new = arrays.Basis(
            math.normalize(math.cross(j_new, z_new)), j_new, z_new
        )
        newTransportFrames = np.zeros_like(transportFrames)
        for i, frame in enumerate(transportFrames):
            newTransportFrames[i] = arrays.Basis(frame @ ijk_new)
        if return_index:
            return newTransportFrames, origin_id
        else:
            return newTransportFrames
コード例 #5
0
def unwrap_cylinder_vtk_from_centerline(centerline,
                                        pv_mesh,
                                        clip=3,
                                        points_per_contour=256):

    s = np.linspace(0, 1, len(centerline.T) + clip * 2)
    centerline = centerline(s)

    tangents = math.normalize(np.gradient(centerline, axis=-1, edge_order=2))
    transport_frames = centerline.transport_frames()
    slices = []

    for i, (frame, c) in enumerate(zip(transport_frames, centerline.T)):

        t = frame[:, -1]

        # uncomment to check the clipping
        # if (any([i==clip, i>=(max(centerline.shape)-clip)])):
        #     cut = pv_mesh.slice(normal=t, origin=c)
        #     cut.plot()

        if (all([i >= clip, i < (max(centerline.shape) - clip)])):

            cut = pv_mesh.slice(normal=t, origin=c)

            connected_regions = cut.connectivity()

            unique_arrays = np.unique(
                connected_regions.point_arrays['RegionId'])

            if len(unique_arrays) > 1:
                min_distance = 1000000000

                for region in unique_arrays:
                    mask = connected_regions.point_arrays['RegionId'] == region
                    points = connected_regions.points[mask]
                    distance = math.l2_norm(points.mean() - c).squeeze()
                    if distance < min_distance:

                        min_distance = distance
                        min_id = unique_arrays
                        required_mask = mask

            else:
                min_id = unique_arrays.squeeze()
                required_mask = connected_regions.point_arrays[
                    'RegionId'] == unique_arrays

            current_slice = {}
            current_slice['points'] = connected_regions.points[required_mask]
            current_slice['point_arrays'] = {}
            for key in connected_regions.point_arrays.keys():
                if key != "RegionId":
                    current_slice["point_arrays"][
                        key] = connected_regions.point_arrays[key][
                            required_mask]

            contour_field = arrays.FieldContour(
                current_slice["points"].T,
                fields=dict([(key, current_slice["point_arrays"][key].T)
                             for key in current_slice["point_arrays"].keys()]))

            contour_field = contour_field.sortByBasis(frame)

            slices.append(contour_field(np.linspace(0, 1, points_per_contour)))

    # create grids out of the slices
    point_grid = np.stack(slices, axis=-1)
    field_grids = {}
    for key in slices[0].fields.keys():
        field_stack = [s.fields[key] for s in slices]
        field_stack = np.stack(field_stack, axis=-1)
        field_grids[key] = field_stack

    # create the cylinder stack
    point_grid, field_grid = arrays.structured.CylindricalSurface.align_contour_points(
        slices, field_grids=field_grids)

    # # plot the resulting fields
    # pyplot.imshow(point_grid[0])
    # pyplot.show()
    # pyplot.imshow(point_grid[1])
    # pyplot.show()
    # pyplot.imshow(point_grid[2])
    # pyplot.show()
    # pyplot.imshow(field_grids['magWallShearStress'][0])
    # pyplot.show()

    return point_grid, field_grids
コード例 #6
0
ファイル: Vector.py プロジェクト: YQ161916/pymethods
 def magnitude(self):
     """
     """
     return math.l2_norm(self).squeeze()
コード例 #7
0
ファイル: Curve.py プロジェクト: YQ161916/pymethods
 def delta_per_point(self) -> np.ndarray:
     return np.concatenate(
         [[[0]], math.l2_norm(np.diff(self, axis=-1))], axis=-1
     )
コード例 #8
0
    def _sortBifurCenterlinebyMainCenterline(self):
        am = self._mainCenterline[:, 0]
        ab, bb = self._bifurCenterline[:, 0], self._bifurCenterline[:, -1]

        if math.l2_norm(am - ab) > math.l2_norm(am - bb):
            self._bifurCenterline = Curve(np.flipud(self._bifurCenterline.T).T)