コード例 #1
0
def _wt_func(signal: ndarray, params: TFParams, return_opt: bool):
    impl = params.get_item("implementation") or "python"

    result = pymodalib.wavelet_transform(
        signal=signal,
        fs=params.fs,
        fmin=params.get_item("fmin"),
        fmax=params.get_item("fmax"),
        resolution=params.get_item("f0"),
        cut_edges=params.get_item("CutEdges") == "on",
        wavelet=params.get_item("Wavelet"),
        padding=params.get_item("Padding"),
        preprocess=params.get_item("Preprocess") == "on",
        rel_tolerance=params.get_item("RelTol"),
        return_opt=return_opt,
        implementation=impl,
    )

    try:
        wt, freq, opt = result
    except ValueError:
        wt, freq = result
        opt = {}

    return wt, freq, opt
コード例 #2
0
def _wt_surrogate_calc(wt_signal: ndarray, surrogate: ndarray,
                       params: PCParams) -> ndarray:
    """
    Calculates the phase coherence between a signal and a surrogate.

    :param wt_signal: the wavelet transform of the signal
    :param surrogate: the values of the surrogate (not the wavelet transform)
    :param params: the params object with parameters to pass to the wavelet transform function
    :return: [1D array] the wavelet phase coherence between the signal and the surrogate
    """
    wt_surrogate, _ = pymodalib.wavelet_transform(surrogate,
                                                  params.fs,
                                                  **params.get(),
                                                  Display="off")

    surr_avg, _ = wphcoh(wt_signal, wt_surrogate)
    return surr_avg
コード例 #3
0
ファイル: wavelet-matlab.py プロジェクト: INOS-soft/PyMODAlib
import platform

import numpy
import numpy as np
import pymodalib

os.chdir(os.path.abspath(os.path.dirname(__file__)))

if __name__ == "__main__":
    signal = np.load("../1signal_10Hz.npy")

    fs = 10
    times = np.arange(0, signal.size / fs, 1 / fs)

    wt, freq = pymodalib.wavelet_transform(signal,
                                           fs,
                                           cut_edges=True,
                                           implementation="matlab")

    # Save results to a data file.
    numpy.savez("output",
                wt=wt,
                freq=freq,
                times=times,
                implementation="MATLAB")

    if platform.system() != "Linux":
        # Plot the result by importing the plotting script.
        import plot_wavelet

        # Prevents Pycharm from cleaning up the import statement.
        dummy_variable = plot_wavelet
コード例 #4
0
os.chdir(os.path.abspath(os.path.dirname(__file__)))

if __name__ == "__main__":
    signal = np.load("../1signal_10Hz.npy")

    fs = 10

    # Time values associated with the signal.
    times = np.arange(0, signal.size / fs, 1 / fs)

    # Frequency interval (0.07Hz-0.33Hz).
    fmin, fmax = 0.07, 0.33

    # Note: your IDE may incorrectly display an error on this statement.
    wt, freq, wopt = pymodalib.wavelet_transform(
        signal, fs, fmin=fmin, fmax=fmax, return_opt=True, implementation="matlab",
    )

    iamp, iphi, ifreq = pymodalib.ridge_extraction(wt, freq, fs, wopt=wopt)

    fig, ax = plt.subplots()

    wt_amp = np.abs(wt)
    mesh1, mesh2 = np.meshgrid(times, freq)

    # Plot wavelet transform.
    ax.contourf(mesh1, mesh2, wt_amp)

    # Plot frequency ridge.
    ax.plot(times, ifreq, color="red")