コード例 #1
0
    def test_preevaluated(self):
        evaluator = Evaluator()
        pop = Population().new("X", X)
        evaluator.eval(problem, pop)

        pop[range(30)].set("F", None)

        evaluator = Evaluator()
        evaluator.eval(problem, pop)

        np.testing.assert_allclose(F, pop.get("F"))
        self.assertTrue(evaluator.n_eval == 30)
コード例 #2
0
class ACO(Algorithm):
    def __init__(self,
                 ant,
                 pheromones,
                 n_ants=10,
                 global_update='best',
                 local_update=True,
                 evaluate_each_ant=True,
                 display=ACODisplay(),
                 **kwargs):
        """

        Parameters
        ----------

        ant : class
            An objective defining the behavior of each ant

        pheromones : class
            The pheromone implementation storing the amount of pheromones on each edge,
            the evaporation and update.

        n_ants : int
            Number of ants to be used each iteration

        global_update : {'all', 'it-best', 'best'}

        """

        super().__init__(display=display, **kwargs)

        # make the ant always to be a function being able to call
        if not callable(ant):
            proto = deepcopy(ant)

            def new_ant():
                return deepcopy(proto)

            ant = new_ant

        self.ant = ant
        self.pheromones = pheromones
        self.n_ants = n_ants
        self.global_update = global_update
        self.local_update = local_update
        self.evaluate_each_ant = evaluate_each_ant

    def _initialize(self):
        self.evaluator = Evaluator(
            skip_already_evaluated=False
        ) if self.evaluate_each_ant else MockEvaluator()
        self.opt = Population()
        self._next()

    def _next(self):

        # initialize all ants to be used in this iteration
        ants = []
        for k in range(self.n_ants):
            ant = self.ant()
            ant.initialize(self.problem, self.pheromones)
            ants.append(ant)

        active = list(range(self.n_ants))

        while len(active) > 0:

            for k in active:
                ant = ants[k]

                if ant.has_next():
                    ant.next()

                    if self.local_update:
                        e = ant.last()
                        if e is None or e.pheromone is None:
                            raise Exception(
                                "For a local update the ant has to set the pheromones when notified."
                            )
                        else:
                            self.pheromones.set(
                                e.key,
                                self.pheromones.get(e.key) * ant.alpha +
                                e.pheromone * ant.alpha)
                            # self.pheromones.update(e.key, e.pheromone * ant.alpha)

                else:
                    ant.finalize()
                    active = [i for i in active if i != k]

        colony = Population.create(*ants)

        # this evaluation can be disabled or faked if evaluate_each_ant is false - then the finalize method of the
        # ant has to set the objective and/or constraint values accordingly
        self.evaluator.eval(self.problem, colony)
        set_cv(colony)
        set_feasibility(colony)

        # set the current best including the new colony
        opt = FitnessSurvival().do(problem, Population.merge(colony, self.opt),
                                   1)

        # do the evaporation after this iteration
        self.pheromones.evaporate()

        # select the ants to be used for the global pheromone update
        if self.global_update == "all":
            ants_to_update = colony
        elif self.global_update == "it-best":
            ants_to_update = FitnessSurvival().do(problem, colony, 1)
        elif self.global_update == "best":
            ants_to_update = self.opt
        else:
            raise Exception(
                "Unknown value for global updating the pheromones!")

        # now spread the pheromones for each ant depending on performance
        for ant in ants_to_update:
            for e in ant.path:
                if e.pheromone is None:
                    raise Exception(
                        "The ant has to set the pheromone of each entry in the path."
                    )
                else:
                    self.pheromones.update(e.key, e.pheromone * pheromones.rho)

        self.pop, self.off = colony, colony
        self.opt = opt

    def _set_optimum(self, **kwargs):
        pass
コード例 #3
0
 def test_evaluate_pop(self):
     evaluator = Evaluator()
     pop = Population().new("X", X)
     evaluator.eval(problem, pop)
     np.testing.assert_allclose(F, pop.get("F"))
     self.assertTrue(evaluator.n_eval == len(X))
コード例 #4
0
 def test_evaluate_individual(self):
     evaluator = Evaluator()
     ind = evaluator.eval(problem, Individual(X=X[0]))
     np.testing.assert_allclose(F[0], ind.get("F"))
     self.assertTrue(evaluator.n_eval == 1)
コード例 #5
0
 def test_evaluate_array_single(self):
     evaluator = Evaluator(evaluate_values_of=["F", "CV"])
     _F, _CV = evaluator.eval(problem, X[0])
     np.testing.assert_allclose(F[0], _F)
     self.assertTrue(evaluator.n_eval == 1)
コード例 #6
0
 def test_evaluate_array(self):
     evaluator = Evaluator(evaluate_values_of=["F", "CV"])
     _F, _CV = evaluator.eval(problem, X)
     np.testing.assert_allclose(F, _F)
     self.assertTrue(evaluator.n_eval == len(X))