コード例 #1
0
ファイル: thermalblock.py プロジェクト: weslowrie/pymor
def reduce_adaptive_greedy(fom, reductor, validation_mus,
                           extension_alg_name, max_extensions, use_estimator,
                           rho, gamma, theta, pool):

    from pymor.algorithms.adaptivegreedy import rb_adaptive_greedy

    # run greedy
    greedy_data = rb_adaptive_greedy(fom, reductor, validation_mus=-validation_mus,
                                     use_estimator=use_estimator, error_norm=fom.h1_0_semi_norm,
                                     extension_params={'method': extension_alg_name}, max_extensions=max_extensions,
                                     rho=rho, gamma=gamma, theta=theta, pool=pool)
    rom = greedy_data['rom']

    # generate summary
    real_rb_size = rom.solution_space.dim
    # the validation set consists of `validation_mus` random parameters plus the centers of the adaptive sample set cells
    validation_mus += 1
    summary = f'''Adaptive greedy basis generation:
   initial size of validation set:  {validation_mus}
   error estimator used:            {use_estimator}
   extension method:                {extension_alg_name}
   prescribed basis size:           {max_extensions}
   actual basis size:               {real_rb_size}
   elapsed time:                    {greedy_data["time"]}
'''

    return rom, summary
コード例 #2
0
def thermalblock_demo(args):
    args['--grid'] = int(args['--grid'])
    args['RBSIZE'] = int(args['RBSIZE'])
    args['--test'] = int(args['--test'])
    args['--ipython-engines'] = int(args['--ipython-engines'])
    args['--extension-alg'] = args['--extension-alg'].lower()
    assert args['--extension-alg'] in {'trivial', 'gram_schmidt'}
    args['--product'] = args['--product'].lower()
    assert args['--product'] in {'trivial', 'h1'}
    args['--reductor'] = args['--reductor'].lower()
    assert args['--reductor'] in {'traditional', 'residual_basis'}
    args['--cache-region'] = args['--cache-region'].lower()
    args['--validation-mus'] = int(args['--validation-mus'])
    args['--rho'] = float(args['--rho'])
    args['--gamma'] = float(args['--gamma'])
    args['--theta'] = float(args['--theta'])

    problem = thermal_block_problem(num_blocks=(2, 2))
    functionals = [
        ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
        ExpressionParameterFunctional('diffusion[1]**2', {'diffusion': 2}),
        ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
        ExpressionParameterFunctional('diffusion[1]', {'diffusion': 2})
    ]
    problem = problem.with_(
        diffusion=problem.diffusion.with_(coefficients=functionals), )

    print('Discretize ...')
    fom, _ = discretize_stationary_cg(problem, diameter=1. / args['--grid'])

    if args['--list-vector-array']:
        from pymor.discretizers.builtin.list import convert_to_numpy_list_vector_array
        fom = convert_to_numpy_list_vector_array(fom)

    if args['--cache-region'] != 'none':
        # building a cache_id is only needed for persistent CacheRegions
        cache_id = f"pymordemos.thermalblock_adaptive {args['--grid']}"
        fom.enable_caching(args['--cache-region'], cache_id)

    if args['--plot-solutions']:
        print('Showing some solutions')
        Us = ()
        legend = ()
        for mu in problem.parameter_space.sample_randomly(2):
            print(f"Solving for diffusion = \n{mu['diffusion']} ... ")
            sys.stdout.flush()
            Us = Us + (fom.solve(mu), )
            legend = legend + (str(mu['diffusion']), )
        fom.visualize(Us,
                      legend=legend,
                      title='Detailed Solutions for different parameters',
                      block=True)

    print('RB generation ...')

    product = fom.h1_0_semi_product if args['--product'] == 'h1' else None
    coercivity_estimator = ExpressionParameterFunctional(
        'min([diffusion[0], diffusion[1]**2])', fom.parameters)
    reductors = {
        'residual_basis':
        CoerciveRBReductor(fom,
                           product=product,
                           coercivity_estimator=coercivity_estimator),
        'traditional':
        SimpleCoerciveRBReductor(fom,
                                 product=product,
                                 coercivity_estimator=coercivity_estimator)
    }
    reductor = reductors[args['--reductor']]

    pool = new_parallel_pool(ipython_num_engines=args['--ipython-engines'],
                             ipython_profile=args['--ipython-profile'])
    greedy_data = rb_adaptive_greedy(
        fom,
        reductor,
        problem.parameter_space,
        validation_mus=args['--validation-mus'],
        rho=args['--rho'],
        gamma=args['--gamma'],
        theta=args['--theta'],
        use_estimator=not args['--without-estimator'],
        error_norm=fom.h1_0_semi_norm,
        max_extensions=args['RBSIZE'],
        visualize=not args['--no-visualize-refinement'])

    rom = greedy_data['rom']

    if args['--pickle']:
        print(
            f"\nWriting reduced model to file {args['--pickle']}_reduced ...")
        with open(args['--pickle'] + '_reduced', 'wb') as f:
            dump(rom, f)
        print(
            f"Writing detailed model and reductor to file {args['--pickle']}_detailed ..."
        )
        with open(args['--pickle'] + '_detailed', 'wb') as f:
            dump((fom, reductor), f)

    print('\nSearching for maximum error on random snapshots ...')

    results = reduction_error_analysis(
        rom,
        fom=fom,
        reductor=reductor,
        estimator=True,
        error_norms=(fom.h1_0_semi_norm, ),
        condition=True,
        test_mus=problem.parameter_space.sample_randomly(args['--test']),
        basis_sizes=25 if args['--plot-error-sequence'] else 1,
        plot=True,
        pool=pool)

    real_rb_size = rom.solution_space.dim

    print('''
*** RESULTS ***

Problem:
   number of blocks:                   2x2
   h:                                  sqrt(2)/{args[--grid]}

Greedy basis generation:
   estimator disabled:                 {args[--without-estimator]}
   extension method:                   {args[--extension-alg]}
   product:                            {args[--product]}
   prescribed basis size:              {args[RBSIZE]}
   actual basis size:                  {real_rb_size}
   elapsed time:                       {greedy_data[time]}
'''.format(**locals()))
    print(results['summary'])

    sys.stdout.flush()

    if args['--plot-error-sequence']:
        from matplotlib import pyplot as plt
        plt.show(results['figure'])
    if args['--plot-err']:
        mumax = results['max_error_mus'][0, -1]
        U = fom.solve(mumax)
        URB = reductor.reconstruct(rom.solve(mumax))
        fom.visualize(
            (U, URB, U - URB),
            legend=('Detailed Solution', 'Reduced Solution', 'Error'),
            title='Maximum Error Solution',
            separate_colorbars=True,
            block=True)
コード例 #3
0
ファイル: thermalblock_adaptive.py プロジェクト: meretp/pymor
def main(
    rbsize: int = Argument(..., help='Size of the reduced basis.'),

    cache_region: Choices('none memory disk persistent') = Option(
        'none',
        help='Name of cache region to use for caching solution snapshots.'
    ),
    error_estimator: bool = Option(True, help='Use error estimator for basis generation.'),
    gamma: float = Option(0.2, help='Weight factor for age penalty term in refinement indicators.'),
    grid: int = Option(100, help='Use grid with 2*NI*NI elements.'),
    ipython_engines: int = Option(
        0,
        help='If positive, the number of IPython cluster engines to use for parallel greedy search. '
             'If zero, no parallelization is performed.'
    ),
    ipython_profile: str = Option(None, help='IPython profile to use for parallelization.'),
    list_vector_array: bool = Option(
        False,
        help='Solve using ListVectorArray[NumpyVector] instead of NumpyVectorArray.'
    ),
    pickle: str = Option(
        None,
        help='Pickle reduced discretization, as well as reductor and high-dimensional model to files with this prefix.'
    ),
    plot_err: bool = Option(False, help='Plot error.'),
    plot_solutions: bool = Option(False, help='Plot some example solutions.'),
    plot_error_sequence: bool = Option(False, help='Plot reduction error vs. basis size.'),
    product: Choices('euclidean h1') = Option(
        'h1',
        help='Product  w.r.t. which to orthonormalize and calculate Riesz representatives.'
    ),
    reductor: Choices('traditional residual_basis') = Option(
        'residual_basis',
        help='Reductor (error estimator) to choose (traditional, residual_basis).'
    ),
    rho: float = Option(1.1, help='Maximum allowed ratio between error on validation set and on training set.'),
    test: int = Option(10, help='Use COUNT snapshots for stochastic error estimation.'),
    theta: float = Option(0., help='Ratio of elements to refine.'),
    validation_mus: int = Option(0, help='Size of validation set.'),
    visualize_refinement: bool = Option(True, help='Visualize the training set refinement indicators.'),
):
    """Modified thermalblock demo using adaptive greedy basis generation algorithm."""

    problem = thermal_block_problem(num_blocks=(2, 2))
    functionals = [ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
                   ExpressionParameterFunctional('diffusion[1]**2', {'diffusion': 2}),
                   ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
                   ExpressionParameterFunctional('diffusion[1]', {'diffusion': 2})]
    problem = problem.with_(
        diffusion=problem.diffusion.with_(coefficients=functionals),
    )

    print('Discretize ...')
    fom, _ = discretize_stationary_cg(problem, diameter=1. / grid)

    if list_vector_array:
        from pymor.discretizers.builtin.list import convert_to_numpy_list_vector_array
        fom = convert_to_numpy_list_vector_array(fom)

    if cache_region != 'none':
        # building a cache_id is only needed for persistent CacheRegions
        cache_id = f"pymordemos.thermalblock_adaptive {grid}"
        fom.enable_caching(cache_region.value, cache_id)

    if plot_solutions:
        print('Showing some solutions')
        Us = ()
        legend = ()
        for mu in problem.parameter_space.sample_randomly(2):
            print(f"Solving for diffusion = \n{mu['diffusion']} ... ")
            sys.stdout.flush()
            Us = Us + (fom.solve(mu),)
            legend = legend + (str(mu['diffusion']),)
        fom.visualize(Us, legend=legend, title='Detailed Solutions for different parameters', block=True)

    print('RB generation ...')

    product_op = fom.h1_0_semi_product if product == 'h1' else None
    coercivity_estimator = ExpressionParameterFunctional('min([diffusion[0], diffusion[1]**2])',
                                                         fom.parameters)
    reductors = {'residual_basis': CoerciveRBReductor(fom, product=product_op,
                                                      coercivity_estimator=coercivity_estimator),
                 'traditional': SimpleCoerciveRBReductor(fom, product=product_op,
                                                         coercivity_estimator=coercivity_estimator)}
    reductor = reductors[reductor]

    pool = new_parallel_pool(ipython_num_engines=ipython_engines, ipython_profile=ipython_profile)
    greedy_data = rb_adaptive_greedy(
        fom, reductor, problem.parameter_space,
        validation_mus=validation_mus,
        rho=rho,
        gamma=gamma,
        theta=theta,
        use_error_estimator=error_estimator,
        error_norm=fom.h1_0_semi_norm,
        max_extensions=rbsize,
        visualize=visualize_refinement
    )

    rom = greedy_data['rom']

    if pickle:
        print(f"\nWriting reduced model to file {pickle}_reduced ...")
        with open(pickle + '_reduced', 'wb') as f:
            dump(rom, f)
        print(f"Writing detailed model and reductor to file {pickle}_detailed ...")
        with open(pickle + '_detailed', 'wb') as f:
            dump((fom, reductor), f)

    print('\nSearching for maximum error on random snapshots ...')

    results = reduction_error_analysis(rom,
                                       fom=fom,
                                       reductor=reductor,
                                       error_estimator=True,
                                       error_norms=(fom.h1_0_semi_norm,),
                                       condition=True,
                                       test_mus=problem.parameter_space.sample_randomly(test),
                                       basis_sizes=25 if plot_error_sequence else 1,
                                       plot=True,
                                       pool=pool)

    real_rb_size = rom.solution_space.dim

    print('''
*** RESULTS ***

Problem:
   number of blocks:                   2x2
   h:                                  sqrt(2)/{grid}

Greedy basis generation:
   error estimator enalbed:            {error_estimator}
   product:                            {product}
   prescribed basis size:              {rbsize}
   actual basis size:                  {real_rb_size}
   elapsed time:                       {greedy_data[time]}
'''.format(**locals()))
    print(results['summary'])

    sys.stdout.flush()

    if plot_error_sequence:
        from matplotlib import pyplot as plt
        plt.show()
    if plot_err:
        mumax = results['max_error_mus'][0, -1]
        U = fom.solve(mumax)
        URB = reductor.reconstruct(rom.solve(mumax))
        fom.visualize((U, URB, U - URB), legend=('Detailed Solution', 'Reduced Solution', 'Error'),
                      title='Maximum Error Solution', separate_colorbars=True, block=True)