コード例 #1
0
ファイル: la.py プロジェクト: michaellaier/pymor
def test_gram_schmidt():
    for i in (1, 32):
        b = NumpyVectorArray(np.identity(i, dtype=np.float))
        a = gram_schmidt(b)
        assert b == a
    c = NumpyVectorArray([[1.0, 0], [0., 0]])
    a = gram_schmidt(c)
    assert (a.data == np.array([[1.0, 0]])).all()
コード例 #2
0
ファイル: la.py プロジェクト: ftalbrecht/pymor
def test_gram_schmidt():
    for i in (1, 32):
        b = NumpyVectorArray(np.identity(i, dtype=np.float))
        a = gram_schmidt.gram_schmidt(b)
        assert b == a
    c = NumpyVectorArray([[1.0, 0], [0., 0]])
    a = gram_schmidt.gram_schmidt(c)
    assert (a.data == np.array([[1.0, 0]])).all()
コード例 #3
0
def gram_schmidt_basis_extension(basis,
                                 U,
                                 product=None,
                                 copy_basis=True,
                                 copy_U=True):
    """Extend basis using Gram-Schmidt orthonormalization.

    Parameters
    ----------
    basis
        |VectorArray| containing the basis to extend.
    U
        |VectorArray| containing the new basis vectors.
    product
        The scalar product w.r.t. which to orthonormalize; if `None`, the Euclidean
        product is used.
    copy_basis
        If `copy_basis` is `False`, the old basis is extended in-place.
    copy_U
        If `copy_U` is `False`, the new basis vectors are removed from `U`.

    Returns
    -------
    new_basis
        The extended basis.
    extension_data
        Dict containing the following fields:

            :hierarchic: `True` if `new_basis` contains `basis` as its first vectors.

    Raises
    ------
    ExtensionError
        Gram-Schmidt orthonormalization fails. This is the case when no
        vector in `U` is linearly independent from the basis.
    """
    if basis is None:
        basis = U.empty(reserve=len(U))

    basis_length = len(basis)

    new_basis = basis.copy() if copy_basis else basis
    new_basis.append(U, remove_from_other=(not copy_U))
    gram_schmidt(new_basis, offset=basis_length, product=product, copy=False)

    if len(new_basis) <= basis_length:
        raise ExtensionError

    return new_basis, {'hierarchic': True}
コード例 #4
0
ファイル: basisextension.py プロジェクト: ftalbrecht/pymor
def gram_schmidt_basis_extension(basis, U, product=None, copy_basis=True, copy_U=True):
    """Extend basis using Gram-Schmidt orthonormalization.

    Parameters
    ----------
    basis
        |VectorArray| containing the basis to extend.
    U
        |VectorArray| containing the new basis vectors.
    product
        The scalar product w.r.t. which to orthonormalize; if None, the Euclidean
        product is used.
    copy_basis
        If copy_basis is False, the old basis is extended in-place.
    copy_U
        If copy_U is False, the new basis vectors are removed from U.

    Returns
    -------
    new_basis
        The extended basis.
    extension_data
        Dict containing the following fields:

            :hierarchic: `True` if `new_basis` contains `basis` as its first vectors.

    Raises
    ------
    ExtensionError
        Gram-Schmidt orthonormalization fails. This is the case when no
        vector in U is linearly independent from the basis.
    """
    if basis is None:
        basis = U.empty(reserve=len(U))

    basis_length = len(basis)

    new_basis = basis.copy() if copy_basis else basis
    new_basis.append(U, remove_from_other=(not copy_U))
    gram_schmidt(new_basis, offset=basis_length, product=product, copy=False)

    if len(new_basis) <= basis_length:
        raise ExtensionError

    return new_basis, {'hierarchic': True}
コード例 #5
0
def gram_schmidt_basis_extension(basis, U, U_ind=None, product=None, copy_basis=True, copy_U=True):
    '''Extend basis using Gram-Schmidt orthonormalization.

    Parameters
    ----------
    basis
        The basis to extend.
    U
        The new basis vectors.
    U_ind
        Indices of the new basis vectors in U.
    product
        The scalar product w.r.t. which to orthonormalize; if None, the l2-scalar
        product on the coefficient vector is used.
    copy_basis
        If copy_basis is False, the old basis is extended in-place.
    copy_U
        If copy_U is False, the new basis vectors are removed from U.

    Returns
    -------
    The new basis.

    Raises
    ------
    ExtensionError
        Gram-Schmidt orthonormalization fails. Usually this is the case when U
        is not linearily independent from the basis. However this can also happen
        due to rounding errors ...
    '''
    if basis is None:
        basis = NumpyVectorArray(np.zeros((0, U.dim)))

    basis_length = len(basis)

    new_basis = basis.copy() if copy_basis else basis
    new_basis.append(U, o_ind=U_ind, remove_from_other=(not copy_U))
    gram_schmidt(new_basis, offset=len(basis), product=product)

    if len(new_basis) <= basis_length:
        raise ExtensionError

    return new_basis
コード例 #6
0
ファイル: pod.py プロジェクト: NikolaiGraeber/pyMor
def pod(A, modes=None, product=None, tol=None, symmetrize=None, orthonormalize=False,
        check=None, check_tol=None):

    assert isinstance(A, VectorArrayInterface)
    assert len(A) > 0
    assert modes is None or modes <= len(A)
    assert product is None or isinstance(product, OperatorInterface)

    tol = defaults.pod_tol if tol is None else tol
    symmetrize = defaults.pod_symmetrize if symmetrize is None else symmetrize
    orthonormalize = defaults.pod_orthonormalize if orthonormalize is None else orthonormalize
    check = defaults.pod_check if check is None else check
    check_tol = defaults.pod_check_tol if check_tol is None else check_tol


    B = A.gramian() if product is None else product.apply2(A, A, pairwise=False)

    if symmetrize:     # according to rbmatlab this is necessary due to rounding
        B = B + B.T
        B *= 0.5

    eigvals = None if modes is None else (len(B) - modes, len(B) - 1)

    EVALS, EVECS = eigh(B, overwrite_a=True, turbo=True, eigvals=eigvals)
    EVALS = EVALS[::-1]
    EVECS = EVECS.T[::-1, :] # is this a view?

    last_above_tol = np.where(EVALS >= tol)[0][-1]
    EVALS = EVALS[:last_above_tol + 1]
    EVECS = EVECS[:last_above_tol + 1]

    if len(EVALS) == 0:
        return type(A).empty(A.dim)

    POD = A.lincomb(EVECS / np.sqrt(EVALS[:, np.newaxis]))

    if orthonormalize:
        POD = gram_schmidt(POD, product=product)

    if check:
        if not product and not float_cmp_all(POD.dot(POD, pairwise=False), np.eye(len(POD)), check_tol):
            err = np.max(np.abs(POD.dot(POD, pairwise=False) - np.eye(len(POD))))
            raise AccuracyError('result not orthogonal (max err={})'.format(err))
        elif product and not float_cmp_all(product.apply2(POD, POD, pairwise=False), np.eye(len(POD)), check_tol):
            err = np.max(np.abs(product.apply2(POD, POD, pairwise=False) - np.eye(len(POD))))
            raise AccuracyError('result not orthogonal (max err={})'.format(err))

    return POD
コード例 #7
0
def reduce_residual(operator, functional=None, RB=None, product=None, extends=None):
    """Generic reduced basis residual reductor.

    Given an operator and a functional, the concatenation of residual operator
    with the Riesz isomorphism is given by::

        riesz_residual.apply(U, mu)
            == product.apply_inverse(operator.apply(U, mu) - functional.as_vector(mu))

    This reductor determines a low-dimensional subspace of image of a reduced
    basis space under `riesz_residual`, computes an orthonormal basis `residual_range`
    of this range spaces and then returns the Petrov-Galerkin projection ::

        projected_riesz_residual
            === riesz_residual.projected(source_basis=RB, range_basis=residual_range)

    of the `riesz_residual` operator. Given an reduced basis coefficient vector `u`,
    the dual norm of the residual can then be computed as ::

        projected_riesz_residual.apply(u, mu).l2_norm()

    Moreover, a `reconstructor` is provided such that ::

        reconstructor.reconstruct(projected_riesz_residual.apply(u, mu))
            == riesz_residual.apply(RB.lincomb(u), mu)

    Parameters
    ----------
    operator
        See definition of `riesz_residual`.
    functional
        See definition of `riesz_residual`. If `None`, zero right-hand side is assumed.
    RB
        |VectorArray| containing a basis of the reduced space onto which to project.
    product
        Scalar product |Operator| w.r.t. which to compute the Riesz representatives.
    extends
        Set by :meth:`~pymor.algorithms.greedy.greedy` to the result of the
        last reduction in case the basis extension was `hierarchic`. Used to prevent
        re-computation of `residual_range` basis vectors already obtained from previous
        reductions.

    Returns
    -------
    projected_riesz_residual
        See above.
    reconstructor
        See above.
    reduction_data
        Additional data produced by the reduction process. (Compare the `extends` parameter.)
    """
    assert functional is None \
        or functional.range == NumpyVectorSpace(1) and functional.source == operator.source and functional.linear
    assert RB is None or RB in operator.source
    assert product is None or product.source == product.range == operator.range
    assert extends is None or len(extends) == 3

    logger = getLogger('pymor.reductors.reduce_residual')

    if RB is None:
        RB = operator.source.empty()

    if extends and isinstance(extends[0], NonProjectedResiudalOperator):
        extends = None
    if extends:
        residual_range = extends[1].RB.copy()
        residual_range_dims = list(extends[2]['residual_range_dims'])
        ind_range = range(extends[0].source.dim, len(RB))
    else:
        residual_range = operator.range.empty()
        residual_range_dims = []
        ind_range = range(-1, len(RB))

    class CollectionError(Exception):
        def __init__(self, op):
            super(CollectionError, self).__init__()
            self.op = op

    def collect_operator_ranges(op, ind, residual_range):
        if isinstance(op, LincombOperator):
            for o in op.operators:
                collect_operator_ranges(o, ind, residual_range)
        elif isinstance(op, EmpiricalInterpolatedOperator):
            if hasattr(op, 'collateral_basis') and ind == -1:
                residual_range.append(op.collateral_basis)
        elif op.linear and not op.parametric:
            if ind >= 0:
                residual_range.append(op.apply(RB, ind=ind))
        else:
            raise CollectionError(op)

    def collect_functional_ranges(op, residual_range):
        if isinstance(op, LincombOperator):
            for o in op.operators:
                collect_functional_ranges(o, residual_range)
        elif op.linear and not op.parametric:
            residual_range.append(op.as_vector())
        else:
            raise CollectionError(op)

    for i in ind_range:
        logger.info('Computing residual range for basis vector {}...'.format(i))
        new_residual_range = operator.range.empty()
        try:
            if i == -1:
                collect_functional_ranges(functional, new_residual_range)
            collect_operator_ranges(operator, i, new_residual_range)
        except CollectionError as e:
            logger.warn('Cannot compute range of {}. Evaluation will be slow.'.format(e.op))
            operator = operator.projected(RB, None)
            return (NonProjectedResiudalOperator(operator, functional, product),
                    NonProjectedReconstructor(product),
                    {})

        if product:
            logger.info('Computing Riesz representatives for basis vector {}...'.format(i))
            new_residual_range = product.apply_inverse(new_residual_range)

        gram_schmidt_offset = len(residual_range)
        residual_range.append(new_residual_range)
        logger.info('Orthonormalizing ...')
        gram_schmidt(residual_range, offset=gram_schmidt_offset, product=product, copy=False)
        residual_range_dims.append(len(residual_range))

    logger.info('Projecting ...')
    operator = operator.projected(RB, residual_range, product=None)  # the product always cancels out.
    functional = functional.projected(residual_range, None, product=None)

    return (ResidualOperator(operator, functional),
            GenericRBReconstructor(residual_range),
            {'residual_range_dims': residual_range_dims})
コード例 #8
0
ファイル: pod.py プロジェクト: BarbaraV/pymor
def pod(A, modes=None, product=None, tol=None, symmetrize=None, orthonormalize=None,
        check=None, check_tol=None):
    '''Proper orthogonal decomposition of `A`.

    If the |VectorArray| `A` is viewed as a map ::

        A: R^(len(A)) ---> R^(dim(A))

    then the return value of this method is simply the array of left-singular
    vectors of the singular value decomposition of `A`, where the scalar product
    on R^(dim(A) is given by `product` and the scalar product on R^(len(A)) is
    the Euclidean product.

    Parameters
    ----------
    A
        The |VectorArray| for which the POD is to be computed.
    modes
        If not `None` only the first `modes` POD modes (singular vectors) are
        returned.
    products
        Scalar product given as a linear |Operator| w.r.t. compute the POD.
    tol
        Squared singular values smaller than this value are ignored. If `None`,
        the `pod_tol` |default| value is used.
    symmetrize
        If `True` symmetrize the gramian again before proceeding. If `None`,
        the `pod_symmetrize` |default| value is chosen.
    orthonormalize
        If `True`, orthonormalize the computed POD modes again using
        :func:`la.gram_schmidt.gram_schmidt`. If `None`, the `pod_orthonormalize`
        |default| value is used.
    check
        If `True`, check the computed POD modes for orthonormality. If `None`,
        the `pod_check` |default| value is used.
    check_tol
        Tolerance for the orthonormality check. If `None`, the `pod_check_tol`
        |default| value is used.

    Returns
    -------
    |VectorArray| of POD modes.

    '''

    assert isinstance(A, VectorArrayInterface)
    assert len(A) > 0
    assert modes is None or modes <= len(A)
    assert product is None or isinstance(product, OperatorInterface)

    tol = defaults.pod_tol if tol is None else tol
    symmetrize = defaults.pod_symmetrize if symmetrize is None else symmetrize
    orthonormalize = defaults.pod_orthonormalize if orthonormalize is None else orthonormalize
    check = defaults.pod_check if check is None else check
    check_tol = defaults.pod_check_tol if check_tol is None else check_tol

    B = A.gramian() if product is None else product.apply2(A, A, pairwise=False)

    if symmetrize:     # according to rbmatlab this is necessary due to rounding
        B = B + B.T
        B *= 0.5

    eigvals = None if modes is None else (len(B) - modes, len(B) - 1)

    EVALS, EVECS = eigh(B, overwrite_a=True, turbo=True, eigvals=eigvals)
    EVALS = EVALS[::-1]
    EVECS = EVECS.T[::-1, :]  # is this a view? yes it is!

    above_tol = np.where(EVALS >= tol)[0]
    if len(above_tol) == 0:
        return type(A).empty(A.dim)
    last_above_tol = above_tol[-1]

    EVALS = EVALS[:last_above_tol + 1]
    EVECS = EVECS[:last_above_tol + 1]

    POD = A.lincomb(EVECS / np.sqrt(EVALS[:, np.newaxis]))

    if orthonormalize:
        POD = gram_schmidt(POD, product=product, copy=False)

    if check:
        if not product and not float_cmp_all(POD.dot(POD, pairwise=False), np.eye(len(POD)), check_tol):
            err = np.max(np.abs(POD.dot(POD, pairwise=False) - np.eye(len(POD))))
            raise AccuracyError('result not orthogonal (max err={})'.format(err))
        elif product and not float_cmp_all(product.apply2(POD, POD, pairwise=False), np.eye(len(POD)), check_tol):
            err = np.max(np.abs(product.apply2(POD, POD, pairwise=False) - np.eye(len(POD))))
            raise AccuracyError('result not orthogonal (max err={})'.format(err))

    return POD
コード例 #9
0
ファイル: basisextension.py プロジェクト: ftalbrecht/pymor
def pod_basis_extension(basis, U, count=1, copy_basis=True, product=None, orthonormalize=True):
    """Extend basis with the first `count` POD modes of the projection of U onto the
    orthogonal complement of the basis.

    Note that the provided basis is assumed to be orthonormal w.r.t. the provided
    scalar product!

    Parameters
    ----------
    basis
        |VectorArray| containing the basis to extend. The basis is expected to be
        orthonormal w.r.t. `product`.
    U
        |VectorArray| containing the vectors to which the POD is applied.
    count
        Number of POD modes that are to be appended to the basis.
    product
        The scalar product w.r.t. which to orthonormalize; if None, the Euclidean
        product is used.
    copy_basis
        If copy_basis is False, the old basis is extended in-place.
    orthonormalize
        If `True`, re-orthonormalize the new basis vectors obtained by the POD
        in order to improve numerical accuracy.

    Returns
    -------
    new_basis
        The extended basis.
    extension_data
        Dict containing the following fields:

            :hierarchic: `True` if `new_basis` contains `basis` as its first vectors.

    Raises
    ------
    ExtensionError
        POD produces no new vectors. This is the case when no vector in U
        is linearly independent from the basis.
    """
    if basis is None:
        return pod(U, modes=count, product=product)[0], {'hierarchic': True}

    basis_length = len(basis)

    new_basis = basis.copy() if copy_basis else basis

    if product is None:
        U_proj_err = U - basis.lincomb(U.dot(basis, pairwise=False))
    else:
        U_proj_err = U - basis.lincomb(product.apply2(U, basis, pairwise=False))

    new_basis.append(pod(U_proj_err, modes=count, product=product, orthonormalize=False)[0])

    if orthonormalize:
        gram_schmidt(new_basis, offset=len(basis), product=product, copy=False)

    if len(new_basis) <= basis_length:
        raise ExtensionError

    return new_basis, {'hierarchic': True}
コード例 #10
0
ファイル: pod.py プロジェクト: michaellaier/pymor
def pod(A, modes=None, product=None, tol=4e-8, symmetrize=False, orthonormalize=True,
        check=True, check_tol=1e-10):
    """Proper orthogonal decomposition of `A`.

    If the |VectorArray| `A` is viewed as a linear map ::

        A: R^(len(A)) ---> R^(dim(A))

    then the return value of this method is simply the |VectorArray| of left-singular
    vectors of the singular value decomposition of `A` with the scalar product
    on R^(dim(A) given by `product` and the scalar product on R^(len(A)) being
    the Euclidean product.

    Parameters
    ----------
    A
        The |VectorArray| for which the POD is to be computed.
    modes
        If not `None` only the first `modes` POD modes (singular vectors) are
        returned.
    products
        Scalar product |Operator| w.r.t. which the POD is computed.
    tol
        Singular values smaller than this value multiplied by the largest singular
        value are ignored.
    symmetrize
        If `True`, symmetrize the gramian again before proceeding.
    orthonormalize
        If `True`, orthonormalize the computed POD modes again using
        :func:`la.gram_schmidt.gram_schmidt`.
    check
        If `True`, check the computed POD modes for orthonormality.
    check_tol
        Tolerance for the orthonormality check.

    Returns
    -------
    POD
        |VectorArray| of POD modes.
    SVALS
        Sequence of singular values.
    """

    assert isinstance(A, VectorArrayInterface)
    assert len(A) > 0
    assert modes is None or modes <= len(A)
    assert product is None or isinstance(product, OperatorInterface)

    B = A.gramian() if product is None else product.apply2(A, A, pairwise=False)

    if symmetrize:     # according to rbmatlab this is necessary due to rounding
        B = B + B.T
        B *= 0.5

    eigvals = None if modes is None else (len(B) - modes, len(B) - 1)

    EVALS, EVECS = eigh(B, overwrite_a=True, turbo=True, eigvals=eigvals)
    EVALS = EVALS[::-1]
    EVECS = EVECS.T[::-1, :]  # is this a view? yes it is!

    above_tol = np.where(EVALS >= tol ** 2 * EVALS[0])[0]
    if len(above_tol) == 0:
        return type(A).empty(A.dim)
    last_above_tol = above_tol[-1]

    SVALS = np.sqrt(EVALS[:last_above_tol + 1])
    EVECS = EVECS[:last_above_tol + 1]

    POD = A.lincomb(EVECS / SVALS[:, np.newaxis])

    if orthonormalize:
        POD = gram_schmidt(POD, product=product, copy=False)

    if check:
        if not product and not float_cmp_all(POD.dot(POD, pairwise=False), np.eye(len(POD)),
                                             atol=check_tol, rtol=0.):
            err = np.max(np.abs(POD.dot(POD, pairwise=False) - np.eye(len(POD))))
            raise AccuracyError('result not orthogonal (max err={})'.format(err))
        elif product and not float_cmp_all(product.apply2(POD, POD, pairwise=False), np.eye(len(POD)),
                                           atol=check_tol, rtol=0.):
            err = np.max(np.abs(product.apply2(POD, POD, pairwise=False) - np.eye(len(POD))))
            raise AccuracyError('result not orthogonal (max err={})'.format(err))
        if len(POD) < len(EVECS):
            raise AccuracyError('additional orthonormalization removed basis vectors')

    return POD, SVALS
コード例 #11
0
ファイル: residual.py プロジェクト: ftalbrecht/pymor
def reduce_residual(operator, functional=None, RB=None, product=None, extends=None):
    """Generic reduced basis residual reductor.
    """
    assert functional == None \
        or functional.range == NumpyVectorSpace(1) and functional.source == operator.source and functional.linear
    assert RB is None or RB in operator.source
    assert product is None or product.source == product.range == operator.range
    assert extends is None or len(extends) == 3

    logger = getLogger('pymor.reductors.reduce_residual')

    if RB is None:
        RB = operator.source.empty()

    if extends and isinstance(extends[0], NonProjectedResiudalOperator):
        extends = None
    if extends:
        residual_range = extends[1].RB.copy()
        residual_range_dims = list(extends[2]['residual_range_dims'])
        ind_range = range(extends[0].source.dim, len(RB))
    else:
        residual_range = operator.range.empty()
        residual_range_dims = []
        ind_range = range(-1, len(RB))

    class CollectionError(Exception):
        def __init__(self, op):
            super(CollectionError, self).__init__()
            self.op = op

    def collect_operator_ranges(op, ind, residual_range):
        if isinstance(op, LincombOperator):
            for o in op.operators:
                collect_operator_ranges(o, ind, residual_range)
        elif isinstance(op, EmpiricalInterpolatedOperator):
            if hasattr(op, 'collateral_basis') and ind == -1:
                residual_range.append(op.collateral_basis)
        elif op.linear and not op.parametric:
            if ind >= 0:
                residual_range.append(op.apply(RB, ind=ind))
        else:
            raise CollectionError(op)

    def collect_functional_ranges(op, residual_range):
        if isinstance(op, LincombOperator):
            for o in op.operators:
                collect_functional_ranges(o, residual_range)
        elif op.linear and not op.parametric:
            residual_range.append(op.as_vector())
        else:
            raise CollectionError(op)

    for i in ind_range:
        logger.info('Computing residual range for basis vector {}...'.format(i))
        new_residual_range = operator.range.empty()
        try:
            if i == -1:
                collect_functional_ranges(functional, new_residual_range)
            collect_operator_ranges(operator, i, new_residual_range)
        except CollectionError as e:
            logger.warn('Cannot compute range of {}. Evaluation will be slow.'.format(e.op))
            operator = operator.projected(RB, None)
            return (NonProjectedResiudalOperator(operator, functional, product),
                    NonProjectedReconstructor(product),
                    {})

        if product:
            logger.info('Computing Riesz representatives for basis vector {}...'.format(i))
            new_residual_range = product.apply_inverse(new_residual_range)

        gram_schmidt_offset = len(residual_range)
        residual_range.append(new_residual_range)
        logger.info('Orthonormalizing ...')
        gram_schmidt(residual_range, offset=gram_schmidt_offset, product=product, copy=False)
        residual_range_dims.append(len(residual_range))

    logger.info('Projecting ...')
    operator = operator.projected(RB, residual_range, product=None)  # the product always cancels out.
    functional = functional.projected(residual_range, None, product=None)

    return (ResidualOperator(operator, functional),
            GenericRBReconstructor(residual_range),
            {'residual_range_dims': residual_range_dims})
コード例 #12
0
def pod_basis_extension(basis,
                        U,
                        count=1,
                        copy_basis=True,
                        product=None,
                        orthonormalize=True):
    """Extend basis with the first `count` POD modes of the projection of `U` onto the
    orthogonal complement of the basis.

    Note that the provided basis is assumed to be orthonormal w.r.t. the provided
    scalar product!

    Parameters
    ----------
    basis
        |VectorArray| containing the basis to extend. The basis is expected to be
        orthonormal w.r.t. `product`.
    U
        |VectorArray| containing the vectors to which the POD is applied.
    count
        Number of POD modes that are to be appended to the basis.
    product
        The scalar product w.r.t. which to orthonormalize; if `None`, the Euclidean
        product is used.
    copy_basis
        If `copy_basis` is `False`, the old basis is extended in-place.
    orthonormalize
        If `True`, re-orthonormalize the new basis vectors obtained by the POD
        in order to improve numerical accuracy.

    Returns
    -------
    new_basis
        The extended basis.
    extension_data
        Dict containing the following fields:

            :hierarchic: `True` if `new_basis` contains `basis` as its first vectors.

    Raises
    ------
    ExtensionError
        POD produces no new vectors. This is the case when no vector in `U`
        is linearly independent from the basis.
    """
    if basis is None:
        return pod(U, modes=count, product=product)[0], {'hierarchic': True}

    basis_length = len(basis)

    new_basis = basis.copy() if copy_basis else basis

    if product is None:
        U_proj_err = U - basis.lincomb(U.dot(basis, pairwise=False))
    else:
        U_proj_err = U - basis.lincomb(product.apply2(U, basis,
                                                      pairwise=False))

    new_basis.append(
        pod(U_proj_err, modes=count, product=product, orthonormalize=False)[0])

    if orthonormalize:
        gram_schmidt(new_basis, offset=len(basis), product=product, copy=False)

    if len(new_basis) <= basis_length:
        raise ExtensionError

    return new_basis, {'hierarchic': True}