コード例 #1
0
ファイル: elliptic_oned.py プロジェクト: JuliaBru/pymor
def elliptic_oned_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError('Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim_domain=1),
            GenericFunction(lambda X: (X[..., 0] - 0.5) ** 2 * 1000, dim_domain=1)]
    rhs = rhss[args['PROBLEM-NUMBER']]

    d0 = GenericFunction(lambda X: 1 - X[..., 0], dim_domain=1)
    d1 = GenericFunction(lambda X: X[..., 0], dim_domain=1)

    parameter_space = CubicParameterSpace({'diffusionl': 0}, 0.1, 1)
    f0 = ProjectionParameterFunctional('diffusionl', 0)
    f1 = GenericParameterFunctional(lambda mu: 1, {})

    print('Solving on OnedGrid(({0},{0}))'.format(args['N']))

    print('Setup Problem ...')
    problem = EllipticProblem(domain=LineDomain(), rhs=rhs, diffusion_functions=(d0, d1),
                              diffusion_functionals=(f0, f1), dirichlet_data=ConstantFunction(value=0, dim_domain=1),
                              name='1DProblem')

    print('Discretize ...')
    discretizer = discretize_elliptic_fv if args['--fv'] else discretize_elliptic_cg
    discretization, _ = discretizer(problem, diameter=1 / args['N'])

    print('The parameter type is {}'.format(discretization.parameter_type))

    U = discretization.solution_space.empty()
    for mu in parameter_space.sample_uniformly(10):
        U.append(discretization.solve(mu))

    print('Plot ...')
    discretization.visualize(U, title='Solution for diffusionl in [0.1, 1]')
コード例 #2
0
def elliptic_oned_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError('Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [ExpressionFunction('ones(x.shape[:-1]) * 10', 1, ()),
            ExpressionFunction('(x - 0.5)**2 * 1000', 1, ())]
    rhs = rhss[args['PROBLEM-NUMBER']]

    d0 = ExpressionFunction('1 - x', 1, ())
    d1 = ExpressionFunction('x', 1, ())

    parameter_space = CubicParameterSpace({'diffusionl': 0}, 0.1, 1)
    f0 = ProjectionParameterFunctional('diffusionl', 0)
    f1 = ExpressionParameterFunctional('1', {})

    problem = StationaryProblem(
        domain=LineDomain(),
        rhs=rhs,
        diffusion=LincombFunction([d0, d1], [f0, f1]),
        dirichlet_data=ConstantFunction(value=0, dim_domain=1),
        name='1DProblem'
    )

    print('Discretize ...')
    discretizer = discretize_stationary_fv if args['--fv'] else discretize_stationary_cg
    d, data = discretizer(problem, diameter=1 / args['N'])
    print(data['grid'])
    print()

    print('Solve ...')
    U = d.solution_space.empty()
    for mu in parameter_space.sample_uniformly(10):
        U.append(d.solve(mu))
    d.visualize(U, title='Solution for diffusionl in [0.1, 1]')
コード例 #3
0
ファイル: elliptic_oned.py プロジェクト: tobiasleibner/pymor
def elliptic_oned_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError('Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [ExpressionFunction('ones(x.shape[:-1]) * 10', 1, ()),
            ExpressionFunction('(x - 0.5)**2 * 1000', 1, ())]
    rhs = rhss[args['PROBLEM-NUMBER']]

    d0 = ExpressionFunction('1 - x', 1, ())
    d1 = ExpressionFunction('x', 1, ())

    parameter_space = CubicParameterSpace({'diffusionl': 0}, 0.1, 1)
    f0 = ProjectionParameterFunctional('diffusionl', 0)
    f1 = ExpressionParameterFunctional('1', {})

    problem = StationaryProblem(
        domain=LineDomain(),
        rhs=rhs,
        diffusion=LincombFunction([d0, d1], [f0, f1]),
        dirichlet_data=ConstantFunction(value=0, dim_domain=1),
        name='1DProblem'
    )

    print('Discretize ...')
    discretizer = discretize_stationary_fv if args['--fv'] else discretize_stationary_cg
    d, data = discretizer(problem, diameter=1 / args['N'])
    print(data['grid'])
    print()

    print('Solve ...')
    U = d.solution_space.empty()
    for mu in parameter_space.sample_uniformly(10):
        U.append(d.solve(mu))
    d.visualize(U, title='Solution for diffusionl in [0.1, 1]')
コード例 #4
0
def elliptic_oned_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError('Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim_domain=1),
            GenericFunction(lambda X: (X[..., 0] - 0.5) ** 2 * 1000, dim_domain=1)]
    rhs = rhss[args['PROBLEM-NUMBER']]

    d0 = GenericFunction(lambda X: 1 - X[..., 0], dim_domain=1)
    d1 = GenericFunction(lambda X: X[..., 0], dim_domain=1)

    parameter_space = CubicParameterSpace({'diffusionl': 0}, 0.1, 1)
    f0 = ProjectionParameterFunctional('diffusionl', 0)
    f1 = GenericParameterFunctional(lambda mu: 1, {})

    print('Solving on OnedGrid(({0},{0}))'.format(args['N']))

    print('Setup Problem ...')
    problem = EllipticProblem(domain=LineDomain(), rhs=rhs, diffusion_functions=(d0, d1),
                              diffusion_functionals=(f0, f1), dirichlet_data=ConstantFunction(value=0, dim_domain=1),
                              name='1DProblem')

    print('Discretize ...')
    discretizer = discretize_elliptic_fv if args['--fv'] else discretize_elliptic_cg
    discretization, _ = discretizer(problem, diameter=1 / args['N'])

    print('The parameter type is {}'.format(discretization.parameter_type))

    U = discretization.solution_space.empty()
    for mu in parameter_space.sample_uniformly(10):
        U.append(discretization.solve(mu))

    print('Plot ...')
    discretization.visualize(U, title='Solution for diffusionl in [0.1, 1]')