コード例 #1
0
ファイル: operators.py プロジェクト: fameyer/pymor
def test_selection_op():
    p1 = MonomOperator(1)
    select_rhs_functional = GenericParameterFunctional(
        lambda x: round(float(x["nrrhs"])), 
        ParameterType({"nrrhs" : tuple()})
    )
    s1 = SelectionOperator(
        operators = [p1], 
        boundaries = [], 
        parameter_functional = select_rhs_functional,
        name = "foo"
    )
    x = np.linspace(-1., 1., num=3)
    vx = NumpyVectorArray(x[:, np.newaxis])
    assert np.allclose(p1.apply(vx,mu=0).data, s1.apply(vx,mu=0).data)

    s2 = SelectionOperator(
        operators = [p1,p1,p1,p1],
        boundaries = [-3, 3, 7],
        parameter_functional = select_rhs_functional,
        name = "Bar"
    )

    assert s2._get_operator_number({"nrrhs":-4}) == 0
    assert s2._get_operator_number({"nrrhs":-3}) == 0
    assert s2._get_operator_number({"nrrhs":-2}) == 1
    assert s2._get_operator_number({"nrrhs":3}) == 1
    assert s2._get_operator_number({"nrrhs":4}) == 2
    assert s2._get_operator_number({"nrrhs":7}) == 2
    assert s2._get_operator_number({"nrrhs":9}) == 3
コード例 #2
0
ファイル: operators.py プロジェクト: ftalbrecht/pymor
def test_lincomb_op():
    p1 = MonomOperator(1)
    p2 = MonomOperator(2)
    p12 = p1 + p2
    p0 = p1 - p1
    x = np.linspace(-1., 1., num=3)
    vx = NumpyVectorArray(x[:, np.newaxis])
    assert np.allclose(p0.apply(vx).data, [0.])
    assert np.allclose(p12.apply(vx).data, (x * x + x)[:, np.newaxis])
    assert np.allclose((p1 * 2.).apply(vx).data, (x * 2.)[:, np.newaxis])
    assert p2.jacobian(vx).apply(vx).almost_equal(p1.apply(vx) * 2.).all()
    assert p0.jacobian(vx).apply(vx).almost_equal(vx * 0.).all()
    with pytest.raises(TypeError):
        p2.as_vector()
    p1.as_vector()
    assert p1.as_vector().almost_equal(p1.apply(NumpyVectorArray(1.)))

    basis = NumpyVectorArray([1.])
    for p in (p1, p2, p12):
        projected = p.projected(basis, basis)
        pa = projected.apply(vx)
        assert pa.almost_equal(p.apply(vx)).all()
コード例 #3
0
def test_lincomb_op():
    p1 = MonomOperator(1)
    p2 = MonomOperator(2)
    p12 = p1 + p2
    p0 = p1 - p1
    x = np.linspace(-1., 1., num=3)
    vx = NumpyVectorArray(x[:, np.newaxis])
    assert np.allclose(p0.apply(vx).data, [0.])
    assert np.allclose(p12.apply(vx).data, (x * x + x)[:, np.newaxis])
    assert np.allclose((p1 * 2.).apply(vx).data, (x * 2.)[:, np.newaxis])
    assert p2.jacobian(vx).apply(vx).almost_equal(p1.apply(vx) * 2.).all()
    assert p0.jacobian(vx).apply(vx).almost_equal(vx * 0.).all()
    with pytest.raises(TypeError):
        p2.as_vector()
    p1.as_vector()
    assert p1.as_vector().almost_equal(p1.apply(NumpyVectorArray(1.)))

    basis = NumpyVectorArray([1.])
    for p in (p1, p2, p12):
        projected = p.projected(basis, basis)
        pa = projected.apply(vx)
        assert pa.almost_equal(p.apply(vx)).all()