for i in range(gmphd_num_steps): sys.stdout.write('Step %d\r\n' % i) gm_list = gmphd_predictor(model=gmphd_model, gm_list=gmphd_gm_list) gm_list = gmphd_corrector(model=gmphd_model, gm_list=gm_list, observation=gmphd_observation[i]) gm_list = gm_pruning(gm_list=gm_list, T=gmphd_model.gm_T, U=gmphd_model.gm_U, C=gmphd_model.gm_Jmax) # Get Prediction gmphd_prediction.append(gm_estimator(gm_list)) # Save temporary result gmphd_phd['s'].append( gm_calculate(gm_list=gm_list, grid=(grid_x, grid_y, grid_z))) gmphd_phd['gms'].append(copy.deepcopy(gm_list)) # Update GM_LIST gmphd_gm_list = gm_list print('Target spotted %d' % len(gmphd_prediction[i])) result_filename = os.path.join(chkpt_dir, 'gmphd_3dcv_chkpt.pkl') result_fp = open(result_filename, 'wb') pickle.dump( { 'model': gmphd_model, 'phd': gmphd_phd, 'prediction': gmphd_prediction,
sys.stdout.write('Step %d\r\n' % i) gm_list = gmphd_predictor(model=gmphd_model, gm_list=gmphd_gm_list) gm_list = gmphd_corrector(model=gmphd_model, gm_list=gm_list, observation=gmphd_observation[i]) gm_list = gm_pruning(gm_list=gm_list, T=gmphd_model.gm_T, U=gmphd_model.gm_U, C=gmphd_model.gm_Jmax) # Get Prediction gmphd_prediction.append(gm_estimator(gm_list)) # Save temporary result gmphd_phd['s'].append(gm_calculate( gm_list=gm_list, grid=(grid_x, grid_y) )) gmphd_phd['gms'] = copy.deepcopy(gm_list) # Update GM_LIST gmphd_gm_list = gm_list print('Target spotted %d' % len(gmphd_prediction[i])) result_filename = os.path.join(chkpt_dir, 'gmphd_2dcv_noise_chkpt.pkl') result_fp = open(result_filename, 'wb') pickle.dump({ 'model': gmphd_model, 'phd': gmphd_phd, 'prediction': gmphd_prediction,