for peak in real_peak_list: area = peak_sum_area(real_im, peak) peak.set_area(area) # real_peak_list is PyMS' best guess at the true peak list ################## Run Simulator ###################### # Simulator takes a peak list, time_list and mass_list # and returns an IntensityMatrix object. # The mass_list and time_list are the same for the real # data and the simulated data. time_list = real_im.get_time_list() mass_list = real_im.get_mass_list() sim_im = gcms_sim(time_list, mass_list, real_peak_list) # sim_im is an IntensityMatrix object # Now add noise to the simulated intensity matrix object scale = 1000 add_gaussc_noise(sim_im, scale) ### Now display the ics from the simulated data ics = [] for i in range(n_mz): ics.append(sim_im.get_ic_at_index(i)) display = Display() display.plot_ics(ics) display.do_plotting( 'ICs of Simulated Data with gaussian noise (constant scale)')
area = peak_sum_area(real_im, peak) peak.set_area(area) # real_peak_list is PyMS' best guess at the true peak list ################## Run Simulator ###################### # Simulator takes a peak list, time_list and mass_list # and returns an IntensityMatrix object. # The mass_list and time_list are the same for the real # data and the simulated data. time_list = real_im.get_time_list() mass_list = real_im.get_mass_list() sim_im = gcms_sim(time_list, mass_list, real_peak_list) # sim_im is an IntensityMatrix object # Now add noise to the simulated intensity matrix object scale = 1000 cutoff = 10000 prop = 0.0003 add_gaussv_noise(sim_im, scale, cutoff, prop) ### Now display the ics from the simulated data ics = [] for i in range(n_mz): ics.append(sim_im.get_ic_at_index(i)) display = Display()