コード例 #1
0
ファイル: myplots.py プロジェクト: bbw7561135/Ramses_ISM_CR
    def getDataMap(ro,
                   typlot,
                   vector_field=None,
                   sinkdset=None,
                   cam=None,
                   verbose=False):
        """ sinkdset is an array containing all the data needed to plot sink info"""
        if cam is None:
            cam = Camera(size_unit=ro.info["unit_length"])
        # Gets list of amr fields needed for amr_source of pymses
        source = ro.amr_source(typlot.amrFields,
                               grav_compat=GRAV_COMPAT,
                               verbose=verbose)

        # Defines Operator of pymses needed for the slicing
        varplot_op = ScalarOperator(typlot.get_calc(ro), typlot.unit)

        # Slicing process
        mapx = slicing.SliceMap(source, cam, varplot_op, z=0.0)

        if vector_field is not None:
            source = ro.amr_source(vector_field.amrFields,
                                   grav_compat=GRAV_COMPAT,
                                   verbose=verbose)
            mapx._vector_field = vector_field
            u_axis, v_axis, _ = cam.get_camera_axis()

            vect_U = vector_field.dot(u_axis)
            varplot_op = ScalarOperator(vect_U.get_calc(ro), vect_U.unit)
            mapxU = slicing.SliceMap(source, cam, varplot_op, z=0.0)
            mapx._vmapU = mapxU._vmap.copy().transpose()

            vect_V = vector_field.dot(v_axis)
            varplot_op = ScalarOperator(vect_V.get_calc(ro), vect_V.unit)
            mapxV = slicing.SliceMap(source, cam, varplot_op, z=0.0)
            mapx._vmapV = mapxV._vmap.copy().transpose()
        else:
            mapx._vector_field = None

        mapx._cblabel = typlot.label()
        mapx._ro = ro
        mapx._info = ro.info
        mapx._sinkdset = sinkdset
        mapx = myDataMap.convert2myDataMap(mapx)
        return mapx
コード例 #2
0
ファイル: engines.py プロジェクト: sully90/seren3
    def get_operator(self):
        '''
        Return a simple scalar operator for this field, provided it is intensive
        '''
        from pymses.analysis import ScalarOperator

        is_max_alos = self.IsMaxAlos()
        op = ScalarOperator( lambda dset: self.get_field(dset, self.field), self.get_map_unit(), is_max_alos=is_max_alos)
        return op
コード例 #3
0
ファイル: engines.py プロジェクト: sully90/seren3
 def get_operator(self):
     from pymses.analysis import ScalarOperator
     '''
     Here will won't pass the dset through the DerivedDataset for the projection,
     we'll just handle the raw dataset ourselves
     '''
     unit = self.info["unit_density"]
     op = ScalarOperator(lambda dset: dset["rho"] * dset.get_sizes()**3, unit)
     return op
コード例 #4
0


#-----------------
#-----------------
#Calcul des cartes
#-----------------
#-----------------

if selon_x==True:
    #--------------------------------------------
    #Calcul de la carte ou l'on regarde suivant x
    #--------------------------------------------
    cam_x = Camera(center=center,line_of_sight_axis='x',region_size=[2.*radius,2.*radius],distance=radius,far_cut_depth=radius,up_vector='z',map_max_size=512)

    rho_op = ScalarOperator(lambda dset: dset["rho"] ,  ro.info["unit_density"])
    rt = raytracing.RayTracer(amr,ro.info,rho_op)
    datamap = rt.process(cam_x, surf_qty=True)
    map_col = np.log10(datamap.map.T*lbox_cm)

    if v_proj == True:
        Vx_op = ScalarOperator(lambda dset: dset["vel"][...,0]*dset["rho"] ,  ro.info["unit_velocity"])
        rt = raytracing.RayTracer(amr,ro.info,Vx_op)
        datamap_vx = rt.process(cam_x, surf_qty=True)
        map_Vx = datamap_vx.map.T / datamap.map.T * factor_vel_km_s


    if fleche_vel == True:
        Vy_depuis_x_op = ScalarOperator(lambda dset: dset["vel"][...,1]*dset["rho"] ,  ro.info["unit_velocity"])
        rt = raytracing.RayTracer(amr,ro.info,Vy_depuis_x_op)
        datamap_vy_depuis_x = rt.process(cam_x, surf_qty=True)
コード例 #5
0
def carte_dens_vel(view_diagram, up_vector, pos_colorbar_dens,
                   pos_colorbar_vel, tag_compl):
    #-----------------------------------------------------------
    #Calcul de la carte ou l'on regarde suivant un vecteur donne
    #-----------------------------------------------------------
    cam_x = Camera(center=center,
                   line_of_sight_axis=view_diagram,
                   region_size=[2. * radius, 2. * radius],
                   distance=radius,
                   far_cut_depth=radius,
                   up_vector=up_vector,
                   map_max_size=512)

    #rho_op = ScalarOperator(lambda dset: dset["rho"] ,  ro.info["unit_density"])
    rho_op = ScalarOperator(disk_op, ro.info["unit_density"])
    rt = raytracing.RayTracer(amr, ro.info, rho_op)
    datamap = rt.process(cam_x)  #, surf_qty=True)
    #map_col = np.log10(datamap.map.T*lbox_cm)
    map_col = datamap.map.T
    map_col[np.where(map_col != 0)] = 1

    if v_proj == True:
        Vx_op = ScalarOperator(
            lambda dset:
            ((dset["vel"][..., 0] * np.array(view_diagram)[0]) +
             (dset["vel"][..., 1] * np.array(view_diagram)[1]) +
             (dset["vel"][..., 2] * np.array(view_diagram)[2])) / np.sqrt(
                 np.sum(np.array(view_diagram)**2)) * dset["rho"],
            ro.info["unit_velocity"])
        rt = raytracing.RayTracer(amr, ro.info, Vx_op)
        datamap_vx = rt.process(cam_x, surf_qty=True)
        map_Vx = datamap_vx.map.T / datamap.map.T * factor_vel_km_s

    #--------------------
    #Debut figure coldens
    #--------------------
    plt.figure()
    ax = plt.gca()
    im1 = plt.imshow(map_col,
                     extent=[(-radius + center[1]) * lbox_au,
                             (radius + center[1]) * lbox_au,
                             (-radius + center[2]) * lbox_au,
                             (radius + center[2]) * lbox_au],
                     origin='lower',
                     vmin=vmin_dens,
                     vmax=vmax_dens)
    #if pos_colorbar_dens=='left':
    #    ax.yaxis.set_ticks_position('right')
    #    ax.yaxis.set_label_position("right")

    if sink_plot == True:
        for i in range(len(m_sinks)):
            if (y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                    y_sinks[i] < (radius + center[1]) * lbox_au) & (
                        z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                            z_sinks[i] < (radius + center[2]) * lbox_au):
                plt.plot(y_sinks[i],
                         z_sinks[i],
                         '.',
                         color=color_sink_colmap,
                         markersize=size_sinks[i],
                         alpha=transparence_sink_colmap)
    ax.set_xlabel(r'$y$ (AU)')
    ax.set_ylabel(r'$z$ (AU)')
    #plt.xticks(rotation=90)
    #plt.locator_params(axis='x', nbins=7)

    if title_time == True:
        plt.title('Time = ' + str(int(simulation_time)) + ' years')
    if title_time_cor == True:
        plt.title('Time = ' + str(int(simulation_time)) +
                  ' years \n Corrected time = ' +
                  str(int(simulation_time - ref[1] * 1e6)) + ' years')

    # Adding the colorbar
    '''
    divider1 = make_axes_locatable(ax)
    if pos_colorbar_dens=='left':
        cax = divider1.append_axes("left", size="6%", pad=0.15)
        cbar1 = plt.colorbar(im1, cax=cax)#, **kw)
        cbar1.ax.yaxis.set_ticks_position('left')
        cbar1.ax.yaxis.set_label_position('left')
    else:
        cax = divider1.append_axes("right", size="6%", pad=0.15)
        cbar1 = plt.colorbar(im1, cax=cax)#, **kw)
    '''
    cbar = plt.colorbar()

    cbar.set_label(
        r'$\text{log} \left( N \right) \, \, \left( cm^{-2} \right)$')
    if radius_zoom == 5:
        plt.xlim([0, lbox_au])
        plt.ylim([0, lbox_au])
    if save == True:
        #plt.tight_layout(pad=0.1) #pad en inch si besoin
        plt.savefig(path_save + simu + '_maskdisk_' + tag_compl +
                    str(radius_zoom) + '_' + str(num_output) + '.pdf',
                    bbox_inches='tight')

    #--------------------
    #Debut figure velproj
    #--------------------
    if v_proj == True:
        plt.figure()
        plt.xticks(rotation=90)
        plt.locator_params(axis='x', nbins=7)
        ax = plt.gca()
        norm = MidpointNormalize(
            midpoint=0)  #Pour avoir le centre de la colormap a 0
        im2 = plt.imshow(map_Vx,
                         extent=[(-radius + center[1]) * lbox_au,
                                 (radius + center[1]) * lbox_au,
                                 (-radius + center[2]) * lbox_au,
                                 (radius + center[2]) * lbox_au],
                         origin='lower',
                         cmap='RdBu_r',
                         norm=norm,
                         vmin=vmin_vel,
                         vmax=vmax_vel)
        if pos_colorbar_vel == 'left':
            ax.yaxis.set_ticks_position('right')
            ax.yaxis.set_label_position("right")

        if sink_plot == True:
            for i in range(len(m_sinks)):
                if (y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                        y_sinks[i] < (radius + center[1]) * lbox_au) & (
                            z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                                z_sinks[i] < (radius + center[2]) * lbox_au):
                    plt.plot(y_sinks[i],
                             z_sinks[i],
                             '.',
                             color=color_sink_velmap,
                             markersize=size_sinks[i],
                             alpha=transparence_sink_velmap)
        plt.xlabel(r'$y$ (AU)')
        plt.ylabel(r'$z$ (AU)')

        if title_time == True:
            plt.title('Time = ' + str(int(simulation_time)) + ' years')
        if title_time_cor == True:
            plt.tight_layout(pad=0.1)  #pad en inch si besoin
            plt.title('Time = ' + str(int(simulation_time - ref[1] * 1e6)) +
                      ' years')

        # Adding the colorbar
        divider2 = make_axes_locatable(ax)
        if pos_colorbar_vel == 'left':
            cax = divider2.append_axes("left", size="6%", pad=0.15)
            cbar2 = plt.colorbar(im2, cax=cax)  #, **kw)
            cbar2.ax.yaxis.set_ticks_position('left')
            cbar2.ax.yaxis.set_label_position('left')
        else:
            cax = divider2.append_axes("right", size="6%", pad=0.15)
            cbar2 = plt.colorbar(im2, cax=cax)  #, **kw)

        cbar2.set_label(r'$v_x \, \left( km.s^{-1} \right) $')
        if radius_zoom == 5:
            plt.xlim([0, lbox_au])
            plt.ylim([0, lbox_au])
        if save == True:
            plt.tight_layout(pad=0.1)  #pad en inch si besoin
            plt.savefig(path_save + simu + '_vel_' + tag_compl +
                        str(radius_zoom) + '_' + str(num_output) +
                        '.pdf')  #, bbox_inches='tight')

    return
#Debut de la boucle sur les coquilles
for radius in shells:
    if selon_x == True:
        #--------------------------------------------
        #Calcul de la carte ou l'on regarde suivant x
        #--------------------------------------------
        cam_x = Camera(center=center,
                       line_of_sight_axis='x',
                       region_size=[2. * radius, 2. * radius],
                       distance=radius,
                       far_cut_depth=radius,
                       up_vector='z',
                       map_max_size=512)

        rho_op = ScalarOperator(lambda dset: dset["rho"],
                                ro.info["unit_density"])
        rt = raytracing.RayTracer(amr, ro.info, rho_op)
        datamap = rt.process(cam_x, surf_qty=True)

        if fig_coldens == True:
            map_col = np.log10(datamap.map.T * lbox_cm)

            plt.figure()
            plt.imshow(map_col,
                       extent=[(-radius + center[0]) * lbox_au,
                               (radius + center[0]) * lbox_au,
                               (-radius + center[1]) * lbox_au,
                               (radius + center[1]) * lbox_au],
                       origin='lower',
                       vmin=vmin_dens,
                       vmax=vmax_dens)
コード例 #7
0
def image(simu, owner, num_output, dir_save):

    save = True

    radius_zoom = 1

    v_proj = True

    title_time = True
    title_time_cor = False
    seuil_rho = 1e-10

    fleche_vel = False
    nbre_fleche = 20  #En fait plus c'est faible plus y'a de fleches...

    selon_x = True
    selon_y = True
    selon_z = True

    vmin_vel = None  #-4.5
    vmax_vel = None  #-vmin_vel

    vmin_dens = None  #22.7
    vmax_dens = None  #28.9

    color_sink_colmap = 'firebrick'
    transparence_sink_colmap = 0.4
    color_sink_velmap = 'limegreen'
    transparence_sink_velmap = 0.7

    reposition_fig = False  #Pour repositionner les figures ouvertes par matplotlib

    #Pour fermer toutes les figures avec matplotlib : plt.close('all')

    #--------------------------------------------------------------
    #Chemin de la simulation et du dossier de sauvegarde des images
    #--------------------------------------------------------------
    if owner == 'averliat':
        path = '/mnt/magmist/magmist/simu_B335_averliat/' + simu + '/'
    if owner == 'phennebe':
        path = '/drf/projets/capucine/' + owner + '/' + simu + '/'
    if owner == 'sapanais':
        path = '/dsm/anais/storageA/magmist/' + simu + '/'
    if owner == 'averliat_alfven':
        path = '/drf/projets/alfven-data/averliat/' + simu + '/'

    path_save = '/home/averliat/these/analyses/' + simu + '/' + dir_save + '/'
    path_analyse = '/home/averliat/these/analyses/' + simu + '/'

    #if simu == 'B335_noturb_norot_hydro_pert_asym_aleatoire50_vhr':
    #   path_t0='/mnt/magmist/magmist/simu_B335_averliat/'+simu+'/'
    #else:
    #   path_t0=path
    path_t0 = path

    if save == True:
        if os.path.isdir(path_save) == False:
            os.mkdir(path_save)

#-------------------
#Lecture de l'output
#-------------------
    ro = pymses.RamsesOutput(path, num_output)
    lbox_pc = ro.info['unit_length'].express(cst.pc)

    amr = ro.amr_source(["rho", "vel", "P", "phi", "g"])

    cell_source = CellsToPoints(amr)
    cells = cell_source.flatten()

    pos = cells.points
    rho = cells["rho"]

    #------------------------------------------------------------
    #Facteur de conversion des unites de code en unites physiques
    #------------------------------------------------------------
    lbox = ro.info['boxlen']
    lbox_m = ro.info['unit_length'].express(cst.m)
    lbox_au = ro.info['unit_length'].express(cst.au)
    lbox_cm = ro.info['unit_length'].express(cst.cm)
    factor_time_yr = ro.info['unit_time'].express(cst.year)
    factor_vel_km_s = ro.info['unit_velocity'].express(cst.km / cst.s)

    simulation_time = ro.info['time'] * factor_time_yr

    #---------------------------------------------------------------------------------
    #Calcul des t_0 de chaque simulation ou lecture des fichiers si calculs deja faits
    #---------------------------------------------------------------------------------
    if title_time_cor == True:
        if os.path.isfile(path_analyse + 't0_seuil_rho_' + str(seuil_rho) +
                          '.txt') == False:
            ref = np.array(
                t_0.temps_0_simu(path_t0, seuil_rho, sortie_output=1))
            np.savetxt(
                path_analyse + 't0_seuil_rho_' + str(seuil_rho) + '.txt', ref)
        else:
            ref = np.loadtxt(path_analyse + 't0_seuil_rho_' + str(seuil_rho) +
                             '.txt')

        #Erreur si on cherche a etudier un fichier inferieur au t0 de la simulation de reference
        if num_output < ref[0]:
            print
            print
            print("=================================================")
            print("=================================================")
            print("/!\   output_ref  <  output_ref_t0   /!\ ")
            print("=================================================")
            print("=================================================")
            title_time_cor = 0

#---------------------------------------------------------
#Definition du centre des images et de leur niveau de zoom
#---------------------------------------------------------
#Position du "centre" de la simulation = endroit le plus dense
    if radius_zoom == 5:
        center = [0.5, 0.5, 0.5]
    else:
        arg_centre = np.argmax(rho)
        center = [
            pos[:, 0][arg_centre], pos[:, 1][arg_centre], pos[:, 2][arg_centre]
        ]

    zoom_v = [0.045, 0.015, 0.005, 0.005 / 3., 0.5]

    if 'bigbox' or 'jet' in simu:
        zoom_v = [
            0.045 / 2, 0.015 / 2, 0.005 / 2, 0.005 / 3. / 2, 0.5, 0.5 / 2,
            0.005 / 20.
        ]
        if radius_zoom == 6:
            center = [0.5, 0.5, 0.5]

    if 'hugebox' in simu:
        zoom_v = [
            0.045 / 4, 0.015 / 4, 0.005 / 4, 0.005 / 3. / 4, 0.5, 0.5 / 4
        ]
        if radius_zoom == 6:
            center = [0.5, 0.5, 0.5]

    radius = zoom_v[radius_zoom - 1]

    #radius=float(zoom_v[np.where(zoom_v==radius_zoom)])     #0.015#0.005 #Niveau de zoom correspondant au niveau '3' des images de "pipeline_image_unique.py"

    #------------------------------------------------------------------------
    #Get the properties of the particules with just the particules' positions
    #Copie depuis module_extract.py
    #------------------------------------------------------------------------
    def read_sink_csv(num, directory, no_cvs=None):

        name = directory + 'output_' + str(num).zfill(5) + '/sink_' + str(
            num).zfill(5) + '.csv'
        print 'read sinks from ', name

        if (no_cvs is None):
            sinks = np.loadtxt(name,
                               delimiter=',',
                               ndmin=2,
                               usecols=(0, 1, 2, 3, 4, 5, 6, 7,
                                        8))  #,9,10,11,12))
        else:
            sinks = np.loadtxt(name,
                               ndmin=2,
                               usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
                                        12))

        return sinks

#------------------------------
#Pour visualiser les sinks
#Adapted from module_extract.py
#------------------------------

    def visualise_sink_AU(path, num_output):
        sinks = read_sink_csv(num_output, path)
        if len(sinks) != 0:
            mass_sinks = sinks[:, 1]  #masse des sinks en masses solaires
            x_sinks = sinks[:,
                            3] * lbox_au / lbox  #coordonnees x des sinks en AU
            y_sinks = sinks[:,
                            4] * lbox_au / lbox  #coordonnees y des sinks en AU
            z_sinks = sinks[:,
                            5] * lbox_au / lbox  #coordonnees z des sinks en AU

            return mass_sinks, x_sinks, y_sinks, z_sinks

#---------------------------------------
#Lecture du fichier sink.csv s'il existe
#---------------------------------------

    sink_plot = False
    if os.path.isfile(path + 'output_' + str(num_output).zfill(5) + '/sink_' +
                      str(num_output).zfill(5) + '.csv') == True:
        #sink_plot=True
        sinks = read_sink_csv(num_output, path)
        if len(sinks) != 0:
            sink_plot = True
        if sink_plot == True:
            m_sinks, x_sinks, y_sinks, z_sinks = visualise_sink_AU(
                path, num_output)
            #size_sinks=20*np.tanh(25*m_sinks)
            size_sinks = 20 * np.sqrt(m_sinks)

            if radius_zoom != 5:  #centrage sur la plus grosse sink au lieu de rho max
                arg_biggest_sink = np.argmax(m_sinks)
                x_biggest_sink = x_sinks[arg_biggest_sink] / lbox_au
                y_biggest_sink = y_sinks[arg_biggest_sink] / lbox_au
                z_biggest_sink = z_sinks[arg_biggest_sink] / lbox_au
                center = [x_biggest_sink, y_biggest_sink, z_biggest_sink]

#---------------------------------------------------------------------------------------------------------------
#Definition prise sur https://stackoverflow.com/questions/20144529/shifted-colorbar-matplotlib/20146989#20146989
#pour avoir le centre de la colorbar a 0
#---------------------------------------------------------------------------------------------------------------

    class MidpointNormalize(Normalize):
        def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
            self.midpoint = midpoint
            Normalize.__init__(self, vmin, vmax, clip)

        def __call__(self, value, clip=None):
            # I'm ignoring masked values and all kinds of edge cases to make a
            # simple example...
            x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
            return np.ma.masked_array(np.interp(value, x, y))

#-----------------
#-----------------
#Calcul des cartes
#-----------------
#-----------------

    if selon_x == True:
        #--------------------------------------------
        #Calcul de la carte ou l'on regarde suivant x
        #--------------------------------------------
        cam_x = Camera(center=center,
                       line_of_sight_axis='x',
                       region_size=[2. * radius, 2. * radius],
                       distance=radius,
                       far_cut_depth=radius,
                       up_vector='z',
                       map_max_size=512)

        rho_op = ScalarOperator(lambda dset: dset["rho"],
                                ro.info["unit_density"])
        rt = raytracing.RayTracer(amr, ro.info, rho_op)
        datamap = rt.process(cam_x, surf_qty=True)
        map_col = np.log10(datamap.map.T * lbox_cm)

        if v_proj == True:
            Vx_op = ScalarOperator(
                lambda dset: dset["vel"][..., 0] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vx_op)
            datamap_vx = rt.process(cam_x, surf_qty=True)
            map_Vx = datamap_vx.map.T / datamap.map.T * factor_vel_km_s

        if fleche_vel == True:
            Vy_depuis_x_op = ScalarOperator(
                lambda dset: dset["vel"][..., 1] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vy_depuis_x_op)
            datamap_vy_depuis_x = rt.process(cam_x, surf_qty=True)
            map_vy_depuis_x = datamap_vy_depuis_x.map.T / datamap.map.T * factor_vel_km_s
            map_vy_depuis_x_red = map_vy_depuis_x[::nbre_fleche, ::nbre_fleche]

            Vz_depuis_x_op = ScalarOperator(
                lambda dset: dset["vel"][..., 2] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vz_depuis_x_op)
            datamap_vz_depuis_x = rt.process(cam_x, surf_qty=True)
            map_vz_depuis_x = datamap_vz_depuis_x.map.T / datamap.map.T * factor_vel_km_s
            map_vz_depuis_x_red = map_vz_depuis_x[::nbre_fleche, ::nbre_fleche]

            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[1]) * lbox_au,
                                    (radius + center[1]) * lbox_au,
                                    (-radius + center[2]) * lbox_au,
                                    (radius + center[2]) * lbox_au],
                            origin='lower')
            plt.xlabel('$y$ (AU)')
            plt.ylabel('$z$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_x_' + str(radius_zoom) + '_' +
                            str(num_output) + '.pdf',
                            bbox_inches='tight')

            nx = map_vy_depuis_x_red.shape[0]
            ny = map_vy_depuis_x_red.shape[1]
            vec_x = (np.arange(nx) * 2. / nx * radius - radius + center[0] +
                     radius / nx) * lbox_au
            vec_y = (np.arange(ny) * 2. / ny * radius - radius + center[1] +
                     radius / nx) * lbox_au
            xx, yy = np.meshgrid(vec_x, vec_y)

            plt.quiver(xx, yy, map_vy_depuis_x_red, map_vz_depuis_x_red)

        else:
            plt.figure()
            plt.imshow(map_col,
                       extent=[(-radius + center[1]) * lbox_au,
                               (radius + center[1]) * lbox_au,
                               (-radius + center[2]) * lbox_au,
                               (radius + center[2]) * lbox_au],
                       origin='lower',
                       vmin=vmin_dens,
                       vmax=vmax_dens)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                            y_sinks[i] <
                        (radius + center[1]) * lbox_au) & (
                            z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                                z_sinks[i] < (radius + center[2]) * lbox_au):
                        plt.plot(y_sinks[i],
                                 z_sinks[i],
                                 '.',
                                 color=color_sink_colmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_colmap)
            plt.xlabel('$y$ (AU)')
            plt.ylabel('$z$ (AU)')
            cbar = plt.colorbar()
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_x_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

        if v_proj == True:
            plt.figure()
            norm = MidpointNormalize(
                midpoint=0)  #Pour avoir le centre de la colormap a 0
            plt.imshow(map_Vx,
                       extent=[(-radius + center[1]) * lbox_au,
                               (radius + center[1]) * lbox_au,
                               (-radius + center[2]) * lbox_au,
                               (radius + center[2]) * lbox_au],
                       origin='lower',
                       cmap='RdBu_r',
                       norm=norm,
                       vmin=vmin_vel,
                       vmax=vmax_vel)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                            y_sinks[i] <
                        (radius + center[1]) * lbox_au) & (
                            z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                                z_sinks[i] < (radius + center[2]) * lbox_au):
                        plt.plot(y_sinks[i],
                                 z_sinks[i],
                                 '.',
                                 color=color_sink_velmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_velmap)
            plt.xlabel('$y$ (AU)')
            plt.ylabel('$z$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$v_x \, (km.s^{-1})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'vel_x_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')

            plt.close()

    if selon_y == True:
        #--------------------------------------------
        #Calcul de la carte ou l'on regarde suivant y
        #--------------------------------------------
        cam_y = Camera(center=center,
                       line_of_sight_axis='y',
                       region_size=[2. * radius, 2. * radius],
                       distance=radius,
                       far_cut_depth=radius,
                       up_vector='x',
                       map_max_size=512)

        rho_op = ScalarOperator(lambda dset: dset["rho"],
                                ro.info["unit_density"])
        rt = raytracing.RayTracer(amr, ro.info, rho_op)
        datamap = rt.process(cam_y, surf_qty=True)
        map_col = np.log10(datamap.map.T * lbox_cm)

        if v_proj == True:
            Vy_op = ScalarOperator(
                lambda dset: dset["vel"][..., 1] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vy_op)
            datamap_vy = rt.process(cam_y, surf_qty=True)
            map_Vy = datamap_vy.map.T / datamap.map.T * factor_vel_km_s

        if fleche_vel == True:
            Vx_depuis_y_op = ScalarOperator(
                lambda dset: dset["vel"][..., 0] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vx_depuis_y_op)
            datamap_vx_depuis_y = rt.process(cam_y, surf_qty=True)
            map_vx_depuis_y = datamap_vx_depuis_y.map.T / datamap.map.T * factor_vel_km_s
            map_vx_depuis_y_red = map_vx_depuis_y[::nbre_fleche, ::nbre_fleche]

            Vz_depuis_y_op = ScalarOperator(
                lambda dset: dset["vel"][..., 2] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vz_depuis_y_op)
            datamap_vz_depuis_y = rt.process(cam_y, surf_qty=True)
            map_vz_depuis_y = datamap_vz_depuis_y.map.T / datamap.map.T * factor_vel_km_s
            map_vz_depuis_y_red = map_vz_depuis_y[::nbre_fleche, ::nbre_fleche]

            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[2]) * lbox_au,
                                    (radius + center[2]) * lbox_au,
                                    (-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au],
                            origin='lower')
            plt.xlabel('$z$ (AU)')
            plt.ylabel('$x$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_y_' + str(radius_zoom) + '_' +
                            str(num_output) + '.pdf',
                            bbox_inches='tight')

            nx = map_vx_depuis_y_red.shape[0]
            ny = map_vx_depuis_y_red.shape[1]
            vec_x = (np.arange(nx) * 2. / nx * radius - radius + center[0] +
                     radius / nx) * lbox_au
            vec_y = (np.arange(ny) * 2. / ny * radius - radius + center[1] +
                     radius / nx) * lbox_au
            xx, yy = np.meshgrid(vec_x, vec_y)

            plt.quiver(xx, yy, map_vz_depuis_y_red, map_vx_depuis_y_red)

        else:
            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[2]) * lbox_au,
                                    (radius + center[2]) * lbox_au,
                                    (-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au],
                            origin='lower',
                            vmin=vmin_dens,
                            vmax=vmax_dens)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                            z_sinks[i] <
                        (radius + center[2]) * lbox_au) & (
                            x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                                x_sinks[i] < (radius + center[0]) * lbox_au):
                        plt.plot(z_sinks[i],
                                 x_sinks[i],
                                 '.',
                                 color=color_sink_colmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_colmap)
            plt.xlabel('$z$ (AU)')
            plt.ylabel('$x$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_y_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

        if v_proj == True:
            plt.figure()
            norm = MidpointNormalize(
                midpoint=0)  #Pour avoir le centre de la colormap a 0
            plt.imshow(map_Vy,
                       extent=[(-radius + center[2]) * lbox_au,
                               (radius + center[2]) * lbox_au,
                               (-radius + center[0]) * lbox_au,
                               (radius + center[0]) * lbox_au],
                       origin='lower',
                       cmap='RdBu_r',
                       norm=norm,
                       vmin=vmin_vel,
                       vmax=vmax_vel)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                            z_sinks[i] <
                        (radius + center[2]) * lbox_au) & (
                            x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                                x_sinks[i] < (radius + center[0]) * lbox_au):
                        plt.plot(z_sinks[i],
                                 x_sinks[i],
                                 '.',
                                 color=color_sink_velmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_velmap)
            plt.xlabel('$z$ (AU)')
            plt.ylabel('$x$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$v_y \, (km.s^{-1})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'vel_y_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

    if selon_z == True:
        #--------------------------------------------
        #Calcul de la carte ou l'on regarde suivant z
        #--------------------------------------------
        cam_z = Camera(center=center,
                       line_of_sight_axis='z',
                       region_size=[2. * radius, 2. * radius],
                       distance=radius,
                       far_cut_depth=radius,
                       up_vector='y',
                       map_max_size=512)

        rho_op = ScalarOperator(lambda dset: dset["rho"],
                                ro.info["unit_density"])
        rt = raytracing.RayTracer(amr, ro.info, rho_op)
        datamap = rt.process(cam_z, surf_qty=True)
        map_col = np.log10(datamap.map.T * lbox_cm)

        if v_proj == True:
            Vz_op = ScalarOperator(
                lambda dset: dset["vel"][..., 2] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vz_op)
            datamap_vz = rt.process(cam_z, surf_qty=True)
            map_Vz = datamap_vz.map.T / datamap.map.T * factor_vel_km_s

        if fleche_vel == True:
            Vx_depuis_z_op = ScalarOperator(
                lambda dset: dset["vel"][..., 0] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vx_depuis_z_op)
            datamap_vx_depuis_z = rt.process(cam_z, surf_qty=True)
            map_vx_depuis_z = datamap_vx_depuis_z.map.T / datamap.map.T * factor_vel_km_s
            map_vx_depuis_z_red = map_vx_depuis_z[::nbre_fleche, ::nbre_fleche]

            Vy_depuis_z_op = ScalarOperator(
                lambda dset: dset["vel"][..., 1] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vy_depuis_z_op)
            datamap_vy_depuis_z = rt.process(cam_z, surf_qty=True)
            map_vy_depuis_z = datamap_vy_depuis_z.map.T / datamap.map.T * factor_vel_km_s
            map_vy_depuis_z_red = map_vy_depuis_z[::nbre_fleche, ::nbre_fleche]

            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au,
                                    (-radius + center[1]) * lbox_au,
                                    (radius + center[1]) * lbox_au],
                            origin='lower')
            plt.xlabel('$x$ (AU)')
            plt.ylabel('$y$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_z_' + str(radius_zoom) + '_' +
                            str(num_output) + '.pdf',
                            bbox_inches='tight')

            nx = map_vx_depuis_z_red.shape[0]
            ny = map_vx_depuis_z_red.shape[1]
            vec_x = (np.arange(nx) * 2. / nx * radius - radius + center[0] +
                     radius / nx) * lbox_au
            vec_y = (np.arange(ny) * 2. / ny * radius - radius + center[1] +
                     radius / nx) * lbox_au
            xx, yy = np.meshgrid(vec_x, vec_y)

            plt.quiver(xx, yy, map_vx_depuis_z_red, map_vy_depuis_z_red)

        else:
            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au,
                                    (-radius + center[1]) * lbox_au,
                                    (radius + center[1]) * lbox_au],
                            origin='lower',
                            vmin=vmin_dens,
                            vmax=vmax_dens)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                            x_sinks[i] <
                        (radius + center[0]) * lbox_au) & (
                            y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                                y_sinks[i] < (radius + center[1]) * lbox_au):
                        plt.plot(x_sinks[i],
                                 y_sinks[i],
                                 '.',
                                 color=color_sink_colmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_colmap)
            plt.xlabel('$x$ (AU)')
            plt.ylabel('$y$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_z_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

        if v_proj == True:
            plt.figure()
            norm = MidpointNormalize(
                midpoint=0)  #Pour avoir le centre de la colormap a 0
            plt.imshow(map_Vz,
                       extent=[(-radius + center[0]) * lbox_au,
                               (radius + center[0]) * lbox_au,
                               (-radius + center[1]) * lbox_au,
                               (radius + center[1]) * lbox_au],
                       origin='lower',
                       cmap='RdBu_r',
                       norm=norm,
                       vmin=vmin_vel,
                       vmax=vmax_vel)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                            x_sinks[i] <
                        (radius + center[0]) * lbox_au) & (
                            y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                                y_sinks[i] < (radius + center[1]) * lbox_au):
                        plt.plot(x_sinks[i],
                                 y_sinks[i],
                                 '.',
                                 color=color_sink_velmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_velmap)
            plt.xlabel('$x$ (AU)')
            plt.ylabel('$y$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$v_z \, (km.s^{-1})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'vel_z_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

    if v_proj == True and reposition_fig == True:
        for i in range(3):
            i *= 2
            for j in range(2):
                plt.figure(i + j + 1)
                mngr = plt.get_current_fig_manager()
                geom = mngr.window.geometry()
                x, y, dx, dy = geom.getRect()
                mngr.window.setGeometry(1920 / 3 * (i / 2), 1080 / 2 * j, dx,
                                        dy)

        plt.figure(1)  #Oblige sinon figure 1 mal placee...
        mngr = plt.get_current_fig_manager()
        geom = mngr.window.geometry()
        x, y, dx, dy = geom.getRect()
        #mngr.window.setGeometry(65,52,dx,dy)
        mngr.window.setGeometry(1, 1, dx, dy)

    return
#-----------------
#-----------------

if selon_x == True:
    #--------------------------------------------
    #Calcul de la carte ou l'on regarde suivant x
    #--------------------------------------------
    cam_x = Camera(center=center,
                   line_of_sight_axis='x',
                   region_size=[2. * radius, 2. * radius],
                   distance=radius,
                   far_cut_depth=radius,
                   up_vector='z',
                   map_max_size=512)

    rho_op = ScalarOperator(lambda dset: dset["rho"], ro.info["unit_density"])
    rt = raytracing.RayTracer(amr, ro.info, rho_op)
    datamap = rt.process(cam_x, surf_qty=True)
    map_col = np.log10(datamap.map.T * lbox_cm)

    if v_proj == True:
        Vx_op = ScalarOperator(lambda dset: dset["vel"][..., 0] * dset["rho"],
                               ro.info["unit_velocity"])
        rt = raytracing.RayTracer(amr, ro.info, Vx_op)
        datamap_vx = rt.process(cam_x, surf_qty=True)
        map_Vx = datamap_vx.map.T / datamap.map.T * factor_vel_km_s

    #Debut figure coldens
    plt.figure()
    ax = plt.gca()
    im1 = plt.imshow(map_col,
    v_ind=1
elif los=='z':
    upvect='y'
    v_ind=2


#level_max=8
map_size=2048
map_size=map_size/2*2+1



cam = Camera(center=center,line_of_sight_axis=los,region_size=[2.*radius,2.*radius],distance=radius,far_cut_depth=radius,up_vector=upvect,map_max_size=map_size)


rho_op = ScalarOperator(lambda dset: dset["rho"] ,  ro.info["unit_density"])
rt = raytracing.RayTracer(amr,ro.info,rho_op)
datamap = rt.process(cam, surf_qty=True)
#map_col = np.log10(datamap.map.T*lbox_cm)


V_op = ScalarOperator(lambda dset: dset["vel"][...,v_ind]*dset["rho"] ,  ro.info["unit_velocity"])
rt = raytracing.RayTracer(amr,ro.info,V_op)
datamap_v = rt.process(cam, surf_qty=True)
map_V = datamap_v.map.T / datamap.map.T * factor_vel_km_s


dist=np.zeros(shape=(map_size,map_size))
for i in range(map_size):
    d_abs=(i-(map_size-1)/2)* R_max/((map_size-1)/2)
    for j in range(map_size):
コード例 #10
0
ファイル: myplots.py プロジェクト: bbw7561135/Ramses_ISM_CR
    def getDataMap(ro,
                   typlot,
                   vector_field=None,
                   sinkdset=None,
                   cam=None,
                   verbose=False):
        if cam is None:
            cam = Camera(size_unit=ro.info["unit_length"])

        # Gets list of amr fields needed for amr_source of pymses
        amr_fields_to_read = Q.get_amrfields_to_read(typlot, Q.rho)
        source = ro.amr_source(amr_fields_to_read,
                               grav_compat=GRAV_COMPAT,
                               verbose=verbose)
        if typlot.name == Q.rho.name:
            func = partial(lambda dset, func, factor: func(dset) * factor,
                           func=Q.rho.get_calc(ro, unit=C.g / C.cm**3),
                           factor=ro.info['unit_length'].express(C.cm))
            unit = Q.rho.unit * ro.info['unit_length']
            varplot_op = ScalarOperator(func, unit)
            cblabel = r"$n \ ( \ g.cm^{-2} \ )$"
        else:
            up_func = partial(lambda dset, f, g: f(dset) * g(dset),
                              f=Q.rho.get_calc(ro),
                              g=typlot.get_calc(ro))
            down_func = Q.rho.get_calc(ro)
            frac_unit = typlot.unit
            varplot_op = FractionOperator(up_func, down_func, frac_unit)
            cblabel = typlot.label()

        rt = raytracing.RayTracer(source, ro.info, varplot_op)
        mapx = rt.process(cam, surf_qty=True)

        if vector_field is not None:
            amr_fields_to_read = Q.get_amrfields_to_read(vector_field, Q.rho)
            source = ro.amr_source(amr_fields_to_read,
                                   grav_compat=GRAV_COMPAT,
                                   verbose=verbose)
            u_axis, v_axis, _ = cam.get_camera_axis()
            down_func = Q.rho.get_calc(ro)
            frac_unit = vector_field.unit

            vect_U = vector_field.dot(u_axis)
            up_func = partial(lambda dset, f, g: f(dset) * g(dset),
                              f=Q.rho.get_calc(ro),
                              g=vect_U.get_calc(ro))
            varplot_op = FractionOperator(up_func, down_func, frac_unit)
            rt = raytracing.RayTracer(source, ro.info, varplot_op)
            mapxU = rt.process(cam, surf_qty=True)

            vect_V = vector_field.dot(v_axis)
            up_func = partial(lambda dset, f, g: f(dset) * g(dset),
                              f=Q.rho.get_calc(ro),
                              g=vect_V.get_calc(ro))
            varplot_op = FractionOperator(up_func, down_func, frac_unit)
            rt = raytracing.RayTracer(source, ro.info, varplot_op)
            mapxV = rt.process(cam, surf_qty=True)

            mapx._vmapU = mapxU._vmap.copy().transpose()
            mapx._vector_field = vector_field
            mapx._vmapV = mapxV._vmap.copy().transpose()
        else:
            mapx._vector_field = None

        # Adds some info needed to DataMap object
        mapx._cblabel = cblabel
        mapx._ro = ro
        mapx._info = ro.info
        mapx._sinkdset = sinkdset
        mapx = myDataMap.convert2myDataMap(mapx)

        return mapx