コード例 #1
0
    def __getitem__(self, item, flatten=True, cpu=None):
        '''
		Return an object containing this field.
		flatten - Return a numpy array containing all points.
		cpu - Return only the domain belonging to this CPU.
		If flatten == False and cpu=None, return an iterable
		'''
        source = self._snapshot.source
        ndim = '3D'
        fields = [
            v.name for v in output.RamsesOutput.amr_field_descrs_by_file[ndim]
            ['hydro']
        ]
        if item in fields:
            #Load and return (will work with multiple fields too!)
            #amr_source = self.amr_source(item)
            cells = CellsToPoints(source)
            if flatten:
                return cells.flatten()
            elif cpu is None:
                return cells.iter_dsets()
            else:
                return cells.get_domain_dset(cpu)
        else:
            #Particle field
            #part_source = self.particle_source(item)
            if flatten:
                return source.flatten()
            elif cpu is None:
                return source.iter_dsets()
            else:
                return source.get_domain_dset(cpu)
コード例 #2
0
    def load(self, *fields):
        """Loads a list of quantitys in the self.qtyDataFrame"""
        print "-> Loading fields ...",
        ro = self.ramsesOutput
        df = self.qtyDataFrame
        # Recherche les champs de *fields qui
        # ne sont pas encore charges dans le dataframe
        fields_to_load = []
        for field in fields:
            if field.name not in df.keys():
                fields_to_load.append(field)
        #
        if fields_to_load:
            amr_fields_to_read = Q.get_amrfields_to_read(*fields_to_load)
            amrSource = ro.amr_source(amr_fields_to_read,
                                      grav_compat=True,
                                      verbose=self._verbose)
            amrSource = RegionFilter(self.sphere, amrSource)
            dset = CellsToPoints(amrSource).flatten()

            for field in fields_to_load:
                df[field.name] = pd.Series(field.process(ro, dset))
            print "   Fields loaded :",
            for field in fields_to_load:
                print field.name,
            print ""
            return fields_to_load
        else:
            print "   No field to load"
            return []
コード例 #3
0
ファイル: quantity.py プロジェクト: bbw7561135/Ramses_ISM_CR
 def process(cls, ro, dset=None, unit=None, verbose=False):
     if dset == None:
         source = ro.amr_source(cls.amrFields,
                                grav_compat=GRAV_COMPAT,
                                verbose=verbose)
         dset = CellsToPoints(source).flatten()
     return cls.get_calc(ro, unit)(dset)
コード例 #4
0
    def filt_cube(self, cube, dset_type, fields):
        '''
		Return flattened dset of points contained by this cube
		'''
        if dset_type == Type.AMR:
            source = self.amr_source(fields)
        elif dset_type == Type.PART:
            source = self.particle_source(fields)
        else:
            raise Exception("No such type: ", dset_type)
        from pymses.filters import CellsToPoints
        from pymses.filters import RegionFilter

        filt_source = RegionFilter(cube, source)
        return CellsToPoints(filt_source).flatten()
コード例 #5
0
ファイル: pymses_helper.py プロジェクト: astro313/mc_eor
def amr2cell(ro=None,
             list_var=None,
             log_sfera=False,
             camera_in={},
             verbose=False):
    """
    log_sfera: Boolean
        True for sphere
    """
    assert ro != None
    assert list_var != None

    from pymses.utils import regions
    from pymses.filters import RegionFilter, CellsToPoints

    amr = ro.amr_source(list_var)

    center = camera_in['center']
    radius = camera_in['region_size'][0]

    if (log_sfera):
        regione_sp = regions.Sphere(center, radius)
    else:
        sinistra = np.copy(center) - radius
        destra = np.copy(center) + radius
        regione_sp = regions.Box((sinistra, destra))

    if (verbose):
        print 'Extracting cells'
        if (log_sfera):
            print '  getting a sphere'
            print '  center:', center
            print '  radius:', radius
        else:
            print '  getting a box'
            print '  center:', center
            print '  size  :', radius
            print '  left  :', sinistra
            print '  right :', destra

    # cut the region
    amr = RegionFilter(regione_sp, amr)
    amr = CellsToPoints(amr)

    celle = amr.flatten()
    amr = None

    return celle
コード例 #6
0
    def __getitem__(self, fields):
        """
        Data access via pymses for family specific tracked/derived fields
        """
        from serensource import SerenSource
        if not hasattr(fields, "__iter__"):
            fields = [fields]
            
        source, required_fields = self.get_source(fields, return_required_fields=True)

        if self.family in ['amr', 'rt']:
            from pymses.filters import CellsToPoints
            source = CellsToPoints(source)

        cpu_list = None
        if hasattr(self.base, "region"):
            from pymses.filters import RegionFilter
            source = RegionFilter(self.base.region, source)

        return SerenSource(self, source)
コード例 #7
0
def masse_dans_coeur_output_unique(simu, owner, num_output, rho_seuil):
	#--------------------------------------------------------------
	#Chemin de la simulation et du dossier de sauvegarde des images
	#--------------------------------------------------------------
	if owner=='averliat':
		path='/gpfs/data1/'+owner+'/'+simu+'/'
	if owner=='phennebe':
		path='/drf/projets/capucine/'+owner+'/'+simu+'/'
	path_save='/gpfs/data1/averliat/analyses/'+simu+'/'



	#-------------------
	#Lecture de l'output
	#-------------------
	ro=pymses.RamsesOutput(path,num_output)
	lbox_pc = ro.info['unit_length'].express(cst.pc)

	amr = ro.amr_source(["rho","vel","P","phi","g"])

	cell_source = CellsToPoints(amr)
	cells = cell_source.flatten(verbose=False)
	dx = cells.get_sizes()

	pos = cells.points
	rho = cells["rho"]



	#------------------------------------------------------------
	#Facteur de conversion des unites de code en unites physiques
	#------------------------------------------------------------
	lbox=ro.info['boxlen']
	lbox_m = ro.info['unit_length'].express(cst.m)
	factor_dist_m = ro.info['unit_length'].express(cst.m)
	factor_dist_cm = ro.info['unit_length'].express(cst.cm)
	lbox_au = ro.info['unit_length'].express(cst.au)
	lbox_cm = ro.info['unit_length'].express(cst.cm)
	factor_time_yr = ro.info['unit_time'].express(cst.year)

	factor_rho_Hcc = ro.info['unit_density'].express(cst.H_cc)
	factor_rho = ro.info['unit_density'].express(cst.kg/(cst.m)**3)



	#------------------------------
	#Conversion en unites physiques
	#------------------------------
	simulation_time = ro.info['time']*factor_time_yr
	dx *= factor_dist_m
	rho_Hcc = rho * factor_rho_Hcc
	rho *= factor_rho



	#---------------------------------------------------------
	#Definition du centre des images et de leur niveau de zoom
	#---------------------------------------------------------
	mask = rho_Hcc > rho_seuil

	rho_masked = rho[mask]
	dx_masked = dx[mask]

	mass_core = np.sum( rho_masked * dx_masked**3 ) / 1.9889e+30  #En Msun
	mass_tot = np.sum( rho * dx**3 ) / 1.9889e+30  #En Msun

	pourcent_mass_core = mass_core / mass_tot *100

	print
	print("==========================================================================")
	print("    M_central_core = "+str(mass_core)+ " Msun")
	print("    M_tot = "+str(mass_tot)+ " Msun")
	print("    Pourcent_M_central_core = "+str(pourcent_mass_core)+ " %")
	print("==========================================================================")
	print
	
	return (mass_core, mass_tot, pourcent_mass_core)
コード例 #8
0
def pdf_to_singledisc_for_plot(path,
                               num,
                               path_out=None,
                               force=False,
                               ps=False,
                               xmin=0,
                               xmax=1.,
                               ymin=0,
                               ymax=1.,
                               zmin=0.,
                               zmax=1.,
                               tag='',
                               order='<',
                               do_plot=False):

    print(num)

    #get the mass weighted density prob density function
    hist_logrho, hist_rho_edges = get_rhopdf(path,
                                             num,
                                             path_out=path_out,
                                             force=force,
                                             ps=ps,
                                             xmin=xmin,
                                             xmax=xmax,
                                             ymin=ymin,
                                             ymax=ymax,
                                             zmin=zmin,
                                             zmax=zmax,
                                             tag=tag,
                                             order=order,
                                             do_plot=do_plot)

    nbin = len(hist_logrho)

    mask_min = hist_rho_edges[0:nbin] > 8.
    mask_max = hist_rho_edges[0:nbin] < 11.

    mask = mask_min * mask_max

    amin = np.argmin(hist_logrho[mask])

    #density at the disk edge
    log_rho_disk = hist_rho_edges[0:nbin][mask][amin]

    print 'log_rho_disk', log_rho_disk

    rho_min_disk = 10**log_rho_disk

    #    pdb.set_trace() # debug mode

    ro = pymses.RamsesOutput(path, num)
    lbox = ro.info['boxlen']  #boxlen in codeunits (=>pc)

    AU, pc, Ms, Myr, scale_n, scale_d, scale_t, scale_l, scale_v, scale_T2, scale_ener, scale_mag, microG, km_s, Cwnm, scale_mass, unit_col, lbox_pc = me.normalisation_averliat(
        ro)

    #time = ro.info['time'] * scale_t / Myr

    amr = ro.amr_source(["rho", "vel"])  #,"Br"])

    cell_source = CellsToPoints(amr)
    cells = cell_source.flatten()
    dx = cells.get_sizes()

    pos = cells.points

    #cells belonging to the disk
    mask_rho_disk = np.log10(cells['rho']) > log_rho_disk

    print 'disk cell number', np.sum(mask_rho_disk)

    #mean magnetic field in the whole selected region
    #mrd=mask_rho_disk

    #volume of the selected region
    #vol = np.sum(dx[mrd]**3)

    #mag_mean_broad=np.sum(np.sqrt((cells['Br'][:,0][mrd]**2+cells['Br'][:,1][mrd]**2+cells['Br'][:,2][mrd]**2))*dx[mrd]**3)/vol

    #normalise it in cgs
    #mag_mean_broad = mag_mean_broad*scale_mag

    #maximum density cell
    mask_rho_max = cells['rho'] == np.max(cells['rho'])

    #mass disk
    #mass_disk = np.sum(dx[mask_rho_disk]**3 * cells['rho'][mask_rho_disk])
    #mass_disk = mass_disk * scale_mass / Ms

    #position of maximum density cell
    pos_max_x = pos[:, 0][mask_rho_max][0]
    pos_max_y = pos[:, 1][mask_rho_max][0]
    pos_max_z = pos[:, 2][mask_rho_max][0]

    #velocity of maximum density cell
    vel_max_x = cells['vel'][:, 0][mask_rho_max][0]
    vel_max_y = cells['vel'][:, 1][mask_rho_max][0]
    vel_max_z = cells['vel'][:, 2][mask_rho_max][0]

    #if(np.sum(mask) <= 1):
    #    return time, 0., 0., 0., 0. , log_rho_disk, mag_mean_broad #, max_rad_disk, mean_rad_disk, mean_out_rad_disk

    #pos_disk_x = pos_disk_x[mask]
    #pos_disk_y = pos_disk_y[mask]
    #pos_disk_z = pos_disk_z[mask]

    #vel_disk_x = vel_disk_x[mask]
    #vel_disk_y = vel_disk_y[mask]
    #vel_disk_z = vel_disk_z[mask]

    #radius of disk cells
    #    rad_disk = np.sqrt( (pos_disk[:,0]-pos_max_x)**2 + (pos_disk[:,1]-pos_max_y)**2 + (pos_disk[:,2]-pos_max_z)**2 )
    #rad_disk = np.sqrt( (pos_disk_x)**2 + (pos_disk_y)**2 + (pos_disk_z)**2 )

    #mean disk radius
    #mean_rad_disk = np.mean(rad_disk)

    return rho_min_disk, pos_max_x, pos_max_y, pos_max_z, vel_max_x, vel_max_y, vel_max_z
コード例 #9
0
def get_rhopdf(path_in,
               num,
               path_out=None,
               force=False,
               ps=False,
               xmin=0,
               xmax=1.,
               ymin=0,
               ymax=1.,
               zmin=0.,
               zmax=1.,
               tag='',
               order='<',
               do_plot=False):

    if (path_out is not None):
        directory_out = path_out
    else:
        directory_out = path_in

    if (tag != ''):
        tag = tag + '_'

    name_save_pdf = directory_out + 'pdf_' + tag + str(num).zfill(5) + '.save'

    #a list of dictionnary to describe the plots
    list_plot = []

    ro = pymses.RamsesOutput(path_in, num, order=order)

    lbox = ro.info['boxlen']  #boxlen in codeunits (=>pc)

    amr = ro.amr_source(["rho"])

    cell_source = CellsToPoints(amr)
    cells = cell_source.flatten()
    dx = cells.get_sizes()

    mask1 = cells.points[:, 0] > xmin
    mask2 = cells.points[:, 0] < xmax
    mask3 = cells.points[:, 1] > ymin
    mask4 = cells.points[:, 1] < ymax
    mask5 = cells.points[:, 2] > zmin
    mask6 = cells.points[:, 2] < zmax
    mask = mask1 * mask2 * mask3 * mask4 * mask5 * mask6

    AU, pc, Ms, Myr, scale_n, scale_d, scale_t, scale_l, scale_v, scale_T2, scale_ener, scale_mag, microG, km_s, Cwnm, scale_mass, unit_col, lbox_pc = me.normalisation_averliat(
        ro)

    vol = dx**3
    mass = cells["rho"] * vol * scale_mass / Ms

    log_rho = np.log10(cells['rho'])
    log_min = min(log_rho)
    log_max = max(log_rho)
    nbin = 50
    width = (log_max - log_min) / nbin

    hist_logrho, hist_rho_edges = P.histogram(log_rho[mask],
                                              bins=nbin,
                                              range=(log_min, log_max),
                                              weights=mass[mask])
    #    pdf_logrho , histrhomv_edges = P.histogram(log_rho[mask],bins=nbin,range=(log_min,log_max),weights=vol[mask])

    if (do_plot):
        #mass weighted histogram of density
        P.clf()
        P.bar(hist_rho_edges[:-1],
              np.log10(hist_logrho) + 3.,
              width,
              -3.,
              color='none',
              edgecolor='k')

        xlabel = '$log(n)$ (cm$^{-3}$)'
        ylabel = '$log(M)$ (M$_\odot$)'

        P.xlabel(r'$log(n)$ (cm$^{-3}$)')
        P.ylabel(r'$log(M)$ (M$_\odot$)')

        name_im = directory_out + 'pdfmw_logrho_bd_' + tag + str(num).zfill(5)

        P.savefig(name_im + '.ps')
        P.savefig(name_im + '.png')

    return hist_logrho, hist_rho_edges
コード例 #10
0
	def mstar_halomass_tree(self, tree, ds):

		snapshot = self._snapshot
		ro = snapshot.raw_snapshot()
		parts = ro.particle_source(["mass", "epoch"])
		amr = ro.amr_source(['rho'])

		#Figure out the smallest possible cell size in code units
		boxlen = ro.info['boxlen']
		lmax = ro.info['levelmax']

		min_dx = boxlen/float(2**(lmax))

		offset = tree.get_offset()
		snap_num = self._snapshot.output_number() - offset

		halos = tree.sub_catalogue('snap_num', snap_num)

		#idx = np.where(tree._tree[:]['snap_num'] == self._snapshot.output_number()-30)[0]
		#halos = tree[idx] # Is this right?

		print 'Loaded halos have snap_num:', halos[1]['snap_num']

		mstar = []
		mhalo = []

		i = 1
		for halo in halos:
			#Check if distinct halo
			if not halo['pid'].value == -1:
				print 'Halo %d skipped: PID = %d'%(halo['id'].value, halo['pid'].value)
				continue

			#Unit conversion
			cen = halo['pos']
			cen = ds.arr(cen.value, cen.unit)
			r = halo['Rvir']
			r = ds.arr(r.value, r.unit)

			#Create the sphere
			cen = cen.in_units('code_length').value
			r = r.in_units('code_length').value
			r_amr = float(r)

			#If the halo radius is smaller than the min cell size,
			#we need to try and approximate the masses enclosed.
			#Not sure how correct this is...
			factor = 1
			if r < min_dx:
				r_amr += min_dx
				vol_halo = (4./3.)*np.pi*r**3
				vol_cell = (4./3.)*np.pi*r_amr**3
				factor = vol_halo/vol_cell

			#Define the regions
			region_part = Sphere(cen, r)
			region_amr = Sphere(cen, r_amr)

			#Filter the particles
			filt_parts = RegionFilter(region_part, parts)			
			part_source = filt_parts.flatten()

			dm = np.where(part_source['epoch'] == 0)[0]
			stars = np.where(part_source['epoch'] != 0)[0]

			part_mass = part_source['mass']*ro.info['unit_mass'].express(C.Msun)

			if len(part_mass[dm]) < 50:
				print 'Discarding halo with less than 200 particles. Mvir=%e'%halo['Mvir'].value
				continue

			#Filter the AMR data
			filt_amr = RegionFilter(region_amr, amr)
			cell_source = CellsToPoints(filt_amr)
			cells = cell_source.flatten()
			rho = cells['rho']*ro.info['unit_density'].express(C.Msun/C.kpc**3)
			vol = (cells.get_sizes()*ro.info['unit_length'].express(C.kpc))**3
			cell_mass = rho*vol

			#Compute the total mass enclosed
			gas_mass = np.sum(cell_mass)*factor # Multiply by factor incase we had to inflate the sphere
			stellar_mass = np.sum(part_mass[stars])
			particle_mass = np.sum(part_mass)
			total_mass = gas_mass + particle_mass

			mstar.append(stellar_mass)
			mhalo.append(total_mass)

			i+=1
			print i
			#print i
			if(config.verbose and (i%100)==0): print 'Processed %d halos...'%i
		return np.array(mstar), np.array(mhalo)
コード例 #11
0
ファイル: compstats.py プロジェクト: vhffm/Viz2
import numpy as np
import sys


# Parse Arguments
if len(sys.argv) == 1:
	iout = 1
elif len(sys.argv) == 2:
	iout = int(sys.argv[1])

# Prepare Output
output = RamsesOutput(".", iout)
source = output.amr_source(["rho"])

# Convert Leaf-Cells to Points
cell_source = CellsToPoints(source)
cells = cell_source.flatten()

# Get Density & Cell Size
rho = cells["rho"]
dx = output.info["boxlen"] * cells.get_sizes()
dV = dx**output.info["ndim"]

# Print Stuff
# print cells["rho"] # contains densities
# print rho          # contains densities
# print cells.points # contains coordinates
# print dx
print ""

# Compute Total Mass
コード例 #12
0
def image(simu, owner, num_output, dir_save):

    save = True

    radius_zoom = 1

    v_proj = True

    title_time = True
    title_time_cor = False
    seuil_rho = 1e-10

    fleche_vel = False
    nbre_fleche = 20  #En fait plus c'est faible plus y'a de fleches...

    selon_x = True
    selon_y = True
    selon_z = True

    vmin_vel = None  #-4.5
    vmax_vel = None  #-vmin_vel

    vmin_dens = None  #22.7
    vmax_dens = None  #28.9

    color_sink_colmap = 'firebrick'
    transparence_sink_colmap = 0.4
    color_sink_velmap = 'limegreen'
    transparence_sink_velmap = 0.7

    reposition_fig = False  #Pour repositionner les figures ouvertes par matplotlib

    #Pour fermer toutes les figures avec matplotlib : plt.close('all')

    #--------------------------------------------------------------
    #Chemin de la simulation et du dossier de sauvegarde des images
    #--------------------------------------------------------------
    if owner == 'averliat':
        path = '/mnt/magmist/magmist/simu_B335_averliat/' + simu + '/'
    if owner == 'phennebe':
        path = '/drf/projets/capucine/' + owner + '/' + simu + '/'
    if owner == 'sapanais':
        path = '/dsm/anais/storageA/magmist/' + simu + '/'
    if owner == 'averliat_alfven':
        path = '/drf/projets/alfven-data/averliat/' + simu + '/'

    path_save = '/home/averliat/these/analyses/' + simu + '/' + dir_save + '/'
    path_analyse = '/home/averliat/these/analyses/' + simu + '/'

    #if simu == 'B335_noturb_norot_hydro_pert_asym_aleatoire50_vhr':
    #   path_t0='/mnt/magmist/magmist/simu_B335_averliat/'+simu+'/'
    #else:
    #   path_t0=path
    path_t0 = path

    if save == True:
        if os.path.isdir(path_save) == False:
            os.mkdir(path_save)

#-------------------
#Lecture de l'output
#-------------------
    ro = pymses.RamsesOutput(path, num_output)
    lbox_pc = ro.info['unit_length'].express(cst.pc)

    amr = ro.amr_source(["rho", "vel", "P", "phi", "g"])

    cell_source = CellsToPoints(amr)
    cells = cell_source.flatten()

    pos = cells.points
    rho = cells["rho"]

    #------------------------------------------------------------
    #Facteur de conversion des unites de code en unites physiques
    #------------------------------------------------------------
    lbox = ro.info['boxlen']
    lbox_m = ro.info['unit_length'].express(cst.m)
    lbox_au = ro.info['unit_length'].express(cst.au)
    lbox_cm = ro.info['unit_length'].express(cst.cm)
    factor_time_yr = ro.info['unit_time'].express(cst.year)
    factor_vel_km_s = ro.info['unit_velocity'].express(cst.km / cst.s)

    simulation_time = ro.info['time'] * factor_time_yr

    #---------------------------------------------------------------------------------
    #Calcul des t_0 de chaque simulation ou lecture des fichiers si calculs deja faits
    #---------------------------------------------------------------------------------
    if title_time_cor == True:
        if os.path.isfile(path_analyse + 't0_seuil_rho_' + str(seuil_rho) +
                          '.txt') == False:
            ref = np.array(
                t_0.temps_0_simu(path_t0, seuil_rho, sortie_output=1))
            np.savetxt(
                path_analyse + 't0_seuil_rho_' + str(seuil_rho) + '.txt', ref)
        else:
            ref = np.loadtxt(path_analyse + 't0_seuil_rho_' + str(seuil_rho) +
                             '.txt')

        #Erreur si on cherche a etudier un fichier inferieur au t0 de la simulation de reference
        if num_output < ref[0]:
            print
            print
            print("=================================================")
            print("=================================================")
            print("/!\   output_ref  <  output_ref_t0   /!\ ")
            print("=================================================")
            print("=================================================")
            title_time_cor = 0

#---------------------------------------------------------
#Definition du centre des images et de leur niveau de zoom
#---------------------------------------------------------
#Position du "centre" de la simulation = endroit le plus dense
    if radius_zoom == 5:
        center = [0.5, 0.5, 0.5]
    else:
        arg_centre = np.argmax(rho)
        center = [
            pos[:, 0][arg_centre], pos[:, 1][arg_centre], pos[:, 2][arg_centre]
        ]

    zoom_v = [0.045, 0.015, 0.005, 0.005 / 3., 0.5]

    if 'bigbox' or 'jet' in simu:
        zoom_v = [
            0.045 / 2, 0.015 / 2, 0.005 / 2, 0.005 / 3. / 2, 0.5, 0.5 / 2,
            0.005 / 20.
        ]
        if radius_zoom == 6:
            center = [0.5, 0.5, 0.5]

    if 'hugebox' in simu:
        zoom_v = [
            0.045 / 4, 0.015 / 4, 0.005 / 4, 0.005 / 3. / 4, 0.5, 0.5 / 4
        ]
        if radius_zoom == 6:
            center = [0.5, 0.5, 0.5]

    radius = zoom_v[radius_zoom - 1]

    #radius=float(zoom_v[np.where(zoom_v==radius_zoom)])     #0.015#0.005 #Niveau de zoom correspondant au niveau '3' des images de "pipeline_image_unique.py"

    #------------------------------------------------------------------------
    #Get the properties of the particules with just the particules' positions
    #Copie depuis module_extract.py
    #------------------------------------------------------------------------
    def read_sink_csv(num, directory, no_cvs=None):

        name = directory + 'output_' + str(num).zfill(5) + '/sink_' + str(
            num).zfill(5) + '.csv'
        print 'read sinks from ', name

        if (no_cvs is None):
            sinks = np.loadtxt(name,
                               delimiter=',',
                               ndmin=2,
                               usecols=(0, 1, 2, 3, 4, 5, 6, 7,
                                        8))  #,9,10,11,12))
        else:
            sinks = np.loadtxt(name,
                               ndmin=2,
                               usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
                                        12))

        return sinks

#------------------------------
#Pour visualiser les sinks
#Adapted from module_extract.py
#------------------------------

    def visualise_sink_AU(path, num_output):
        sinks = read_sink_csv(num_output, path)
        if len(sinks) != 0:
            mass_sinks = sinks[:, 1]  #masse des sinks en masses solaires
            x_sinks = sinks[:,
                            3] * lbox_au / lbox  #coordonnees x des sinks en AU
            y_sinks = sinks[:,
                            4] * lbox_au / lbox  #coordonnees y des sinks en AU
            z_sinks = sinks[:,
                            5] * lbox_au / lbox  #coordonnees z des sinks en AU

            return mass_sinks, x_sinks, y_sinks, z_sinks

#---------------------------------------
#Lecture du fichier sink.csv s'il existe
#---------------------------------------

    sink_plot = False
    if os.path.isfile(path + 'output_' + str(num_output).zfill(5) + '/sink_' +
                      str(num_output).zfill(5) + '.csv') == True:
        #sink_plot=True
        sinks = read_sink_csv(num_output, path)
        if len(sinks) != 0:
            sink_plot = True
        if sink_plot == True:
            m_sinks, x_sinks, y_sinks, z_sinks = visualise_sink_AU(
                path, num_output)
            #size_sinks=20*np.tanh(25*m_sinks)
            size_sinks = 20 * np.sqrt(m_sinks)

            if radius_zoom != 5:  #centrage sur la plus grosse sink au lieu de rho max
                arg_biggest_sink = np.argmax(m_sinks)
                x_biggest_sink = x_sinks[arg_biggest_sink] / lbox_au
                y_biggest_sink = y_sinks[arg_biggest_sink] / lbox_au
                z_biggest_sink = z_sinks[arg_biggest_sink] / lbox_au
                center = [x_biggest_sink, y_biggest_sink, z_biggest_sink]

#---------------------------------------------------------------------------------------------------------------
#Definition prise sur https://stackoverflow.com/questions/20144529/shifted-colorbar-matplotlib/20146989#20146989
#pour avoir le centre de la colorbar a 0
#---------------------------------------------------------------------------------------------------------------

    class MidpointNormalize(Normalize):
        def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
            self.midpoint = midpoint
            Normalize.__init__(self, vmin, vmax, clip)

        def __call__(self, value, clip=None):
            # I'm ignoring masked values and all kinds of edge cases to make a
            # simple example...
            x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
            return np.ma.masked_array(np.interp(value, x, y))

#-----------------
#-----------------
#Calcul des cartes
#-----------------
#-----------------

    if selon_x == True:
        #--------------------------------------------
        #Calcul de la carte ou l'on regarde suivant x
        #--------------------------------------------
        cam_x = Camera(center=center,
                       line_of_sight_axis='x',
                       region_size=[2. * radius, 2. * radius],
                       distance=radius,
                       far_cut_depth=radius,
                       up_vector='z',
                       map_max_size=512)

        rho_op = ScalarOperator(lambda dset: dset["rho"],
                                ro.info["unit_density"])
        rt = raytracing.RayTracer(amr, ro.info, rho_op)
        datamap = rt.process(cam_x, surf_qty=True)
        map_col = np.log10(datamap.map.T * lbox_cm)

        if v_proj == True:
            Vx_op = ScalarOperator(
                lambda dset: dset["vel"][..., 0] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vx_op)
            datamap_vx = rt.process(cam_x, surf_qty=True)
            map_Vx = datamap_vx.map.T / datamap.map.T * factor_vel_km_s

        if fleche_vel == True:
            Vy_depuis_x_op = ScalarOperator(
                lambda dset: dset["vel"][..., 1] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vy_depuis_x_op)
            datamap_vy_depuis_x = rt.process(cam_x, surf_qty=True)
            map_vy_depuis_x = datamap_vy_depuis_x.map.T / datamap.map.T * factor_vel_km_s
            map_vy_depuis_x_red = map_vy_depuis_x[::nbre_fleche, ::nbre_fleche]

            Vz_depuis_x_op = ScalarOperator(
                lambda dset: dset["vel"][..., 2] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vz_depuis_x_op)
            datamap_vz_depuis_x = rt.process(cam_x, surf_qty=True)
            map_vz_depuis_x = datamap_vz_depuis_x.map.T / datamap.map.T * factor_vel_km_s
            map_vz_depuis_x_red = map_vz_depuis_x[::nbre_fleche, ::nbre_fleche]

            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[1]) * lbox_au,
                                    (radius + center[1]) * lbox_au,
                                    (-radius + center[2]) * lbox_au,
                                    (radius + center[2]) * lbox_au],
                            origin='lower')
            plt.xlabel('$y$ (AU)')
            plt.ylabel('$z$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_x_' + str(radius_zoom) + '_' +
                            str(num_output) + '.pdf',
                            bbox_inches='tight')

            nx = map_vy_depuis_x_red.shape[0]
            ny = map_vy_depuis_x_red.shape[1]
            vec_x = (np.arange(nx) * 2. / nx * radius - radius + center[0] +
                     radius / nx) * lbox_au
            vec_y = (np.arange(ny) * 2. / ny * radius - radius + center[1] +
                     radius / nx) * lbox_au
            xx, yy = np.meshgrid(vec_x, vec_y)

            plt.quiver(xx, yy, map_vy_depuis_x_red, map_vz_depuis_x_red)

        else:
            plt.figure()
            plt.imshow(map_col,
                       extent=[(-radius + center[1]) * lbox_au,
                               (radius + center[1]) * lbox_au,
                               (-radius + center[2]) * lbox_au,
                               (radius + center[2]) * lbox_au],
                       origin='lower',
                       vmin=vmin_dens,
                       vmax=vmax_dens)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                            y_sinks[i] <
                        (radius + center[1]) * lbox_au) & (
                            z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                                z_sinks[i] < (radius + center[2]) * lbox_au):
                        plt.plot(y_sinks[i],
                                 z_sinks[i],
                                 '.',
                                 color=color_sink_colmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_colmap)
            plt.xlabel('$y$ (AU)')
            plt.ylabel('$z$ (AU)')
            cbar = plt.colorbar()
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_x_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

        if v_proj == True:
            plt.figure()
            norm = MidpointNormalize(
                midpoint=0)  #Pour avoir le centre de la colormap a 0
            plt.imshow(map_Vx,
                       extent=[(-radius + center[1]) * lbox_au,
                               (radius + center[1]) * lbox_au,
                               (-radius + center[2]) * lbox_au,
                               (radius + center[2]) * lbox_au],
                       origin='lower',
                       cmap='RdBu_r',
                       norm=norm,
                       vmin=vmin_vel,
                       vmax=vmax_vel)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                            y_sinks[i] <
                        (radius + center[1]) * lbox_au) & (
                            z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                                z_sinks[i] < (radius + center[2]) * lbox_au):
                        plt.plot(y_sinks[i],
                                 z_sinks[i],
                                 '.',
                                 color=color_sink_velmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_velmap)
            plt.xlabel('$y$ (AU)')
            plt.ylabel('$z$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$v_x \, (km.s^{-1})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'vel_x_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')

            plt.close()

    if selon_y == True:
        #--------------------------------------------
        #Calcul de la carte ou l'on regarde suivant y
        #--------------------------------------------
        cam_y = Camera(center=center,
                       line_of_sight_axis='y',
                       region_size=[2. * radius, 2. * radius],
                       distance=radius,
                       far_cut_depth=radius,
                       up_vector='x',
                       map_max_size=512)

        rho_op = ScalarOperator(lambda dset: dset["rho"],
                                ro.info["unit_density"])
        rt = raytracing.RayTracer(amr, ro.info, rho_op)
        datamap = rt.process(cam_y, surf_qty=True)
        map_col = np.log10(datamap.map.T * lbox_cm)

        if v_proj == True:
            Vy_op = ScalarOperator(
                lambda dset: dset["vel"][..., 1] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vy_op)
            datamap_vy = rt.process(cam_y, surf_qty=True)
            map_Vy = datamap_vy.map.T / datamap.map.T * factor_vel_km_s

        if fleche_vel == True:
            Vx_depuis_y_op = ScalarOperator(
                lambda dset: dset["vel"][..., 0] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vx_depuis_y_op)
            datamap_vx_depuis_y = rt.process(cam_y, surf_qty=True)
            map_vx_depuis_y = datamap_vx_depuis_y.map.T / datamap.map.T * factor_vel_km_s
            map_vx_depuis_y_red = map_vx_depuis_y[::nbre_fleche, ::nbre_fleche]

            Vz_depuis_y_op = ScalarOperator(
                lambda dset: dset["vel"][..., 2] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vz_depuis_y_op)
            datamap_vz_depuis_y = rt.process(cam_y, surf_qty=True)
            map_vz_depuis_y = datamap_vz_depuis_y.map.T / datamap.map.T * factor_vel_km_s
            map_vz_depuis_y_red = map_vz_depuis_y[::nbre_fleche, ::nbre_fleche]

            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[2]) * lbox_au,
                                    (radius + center[2]) * lbox_au,
                                    (-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au],
                            origin='lower')
            plt.xlabel('$z$ (AU)')
            plt.ylabel('$x$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_y_' + str(radius_zoom) + '_' +
                            str(num_output) + '.pdf',
                            bbox_inches='tight')

            nx = map_vx_depuis_y_red.shape[0]
            ny = map_vx_depuis_y_red.shape[1]
            vec_x = (np.arange(nx) * 2. / nx * radius - radius + center[0] +
                     radius / nx) * lbox_au
            vec_y = (np.arange(ny) * 2. / ny * radius - radius + center[1] +
                     radius / nx) * lbox_au
            xx, yy = np.meshgrid(vec_x, vec_y)

            plt.quiver(xx, yy, map_vz_depuis_y_red, map_vx_depuis_y_red)

        else:
            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[2]) * lbox_au,
                                    (radius + center[2]) * lbox_au,
                                    (-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au],
                            origin='lower',
                            vmin=vmin_dens,
                            vmax=vmax_dens)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                            z_sinks[i] <
                        (radius + center[2]) * lbox_au) & (
                            x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                                x_sinks[i] < (radius + center[0]) * lbox_au):
                        plt.plot(z_sinks[i],
                                 x_sinks[i],
                                 '.',
                                 color=color_sink_colmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_colmap)
            plt.xlabel('$z$ (AU)')
            plt.ylabel('$x$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_y_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

        if v_proj == True:
            plt.figure()
            norm = MidpointNormalize(
                midpoint=0)  #Pour avoir le centre de la colormap a 0
            plt.imshow(map_Vy,
                       extent=[(-radius + center[2]) * lbox_au,
                               (radius + center[2]) * lbox_au,
                               (-radius + center[0]) * lbox_au,
                               (radius + center[0]) * lbox_au],
                       origin='lower',
                       cmap='RdBu_r',
                       norm=norm,
                       vmin=vmin_vel,
                       vmax=vmax_vel)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (z_sinks[i] > (-radius + center[2]) * lbox_au) & (
                            z_sinks[i] <
                        (radius + center[2]) * lbox_au) & (
                            x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                                x_sinks[i] < (radius + center[0]) * lbox_au):
                        plt.plot(z_sinks[i],
                                 x_sinks[i],
                                 '.',
                                 color=color_sink_velmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_velmap)
            plt.xlabel('$z$ (AU)')
            plt.ylabel('$x$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$v_y \, (km.s^{-1})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'vel_y_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

    if selon_z == True:
        #--------------------------------------------
        #Calcul de la carte ou l'on regarde suivant z
        #--------------------------------------------
        cam_z = Camera(center=center,
                       line_of_sight_axis='z',
                       region_size=[2. * radius, 2. * radius],
                       distance=radius,
                       far_cut_depth=radius,
                       up_vector='y',
                       map_max_size=512)

        rho_op = ScalarOperator(lambda dset: dset["rho"],
                                ro.info["unit_density"])
        rt = raytracing.RayTracer(amr, ro.info, rho_op)
        datamap = rt.process(cam_z, surf_qty=True)
        map_col = np.log10(datamap.map.T * lbox_cm)

        if v_proj == True:
            Vz_op = ScalarOperator(
                lambda dset: dset["vel"][..., 2] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vz_op)
            datamap_vz = rt.process(cam_z, surf_qty=True)
            map_Vz = datamap_vz.map.T / datamap.map.T * factor_vel_km_s

        if fleche_vel == True:
            Vx_depuis_z_op = ScalarOperator(
                lambda dset: dset["vel"][..., 0] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vx_depuis_z_op)
            datamap_vx_depuis_z = rt.process(cam_z, surf_qty=True)
            map_vx_depuis_z = datamap_vx_depuis_z.map.T / datamap.map.T * factor_vel_km_s
            map_vx_depuis_z_red = map_vx_depuis_z[::nbre_fleche, ::nbre_fleche]

            Vy_depuis_z_op = ScalarOperator(
                lambda dset: dset["vel"][..., 1] * dset["rho"],
                ro.info["unit_velocity"])
            rt = raytracing.RayTracer(amr, ro.info, Vy_depuis_z_op)
            datamap_vy_depuis_z = rt.process(cam_z, surf_qty=True)
            map_vy_depuis_z = datamap_vy_depuis_z.map.T / datamap.map.T * factor_vel_km_s
            map_vy_depuis_z_red = map_vy_depuis_z[::nbre_fleche, ::nbre_fleche]

            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au,
                                    (-radius + center[1]) * lbox_au,
                                    (radius + center[1]) * lbox_au],
                            origin='lower')
            plt.xlabel('$x$ (AU)')
            plt.ylabel('$y$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_z_' + str(radius_zoom) + '_' +
                            str(num_output) + '.pdf',
                            bbox_inches='tight')

            nx = map_vx_depuis_z_red.shape[0]
            ny = map_vx_depuis_z_red.shape[1]
            vec_x = (np.arange(nx) * 2. / nx * radius - radius + center[0] +
                     radius / nx) * lbox_au
            vec_y = (np.arange(ny) * 2. / ny * radius - radius + center[1] +
                     radius / nx) * lbox_au
            xx, yy = np.meshgrid(vec_x, vec_y)

            plt.quiver(xx, yy, map_vx_depuis_z_red, map_vy_depuis_z_red)

        else:
            plt.figure()
            im = plt.imshow(map_col,
                            extent=[(-radius + center[0]) * lbox_au,
                                    (radius + center[0]) * lbox_au,
                                    (-radius + center[1]) * lbox_au,
                                    (radius + center[1]) * lbox_au],
                            origin='lower',
                            vmin=vmin_dens,
                            vmax=vmax_dens)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                            x_sinks[i] <
                        (radius + center[0]) * lbox_au) & (
                            y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                                y_sinks[i] < (radius + center[1]) * lbox_au):
                        plt.plot(x_sinks[i],
                                 y_sinks[i],
                                 '.',
                                 color=color_sink_colmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_colmap)
            plt.xlabel('$x$ (AU)')
            plt.ylabel('$y$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$log(N) \, \, (cm^{-2})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'dens_z_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

        if v_proj == True:
            plt.figure()
            norm = MidpointNormalize(
                midpoint=0)  #Pour avoir le centre de la colormap a 0
            plt.imshow(map_Vz,
                       extent=[(-radius + center[0]) * lbox_au,
                               (radius + center[0]) * lbox_au,
                               (-radius + center[1]) * lbox_au,
                               (radius + center[1]) * lbox_au],
                       origin='lower',
                       cmap='RdBu_r',
                       norm=norm,
                       vmin=vmin_vel,
                       vmax=vmax_vel)
            if sink_plot == True:
                for i in range(len(m_sinks)):
                    if (x_sinks[i] > (-radius + center[0]) * lbox_au) & (
                            x_sinks[i] <
                        (radius + center[0]) * lbox_au) & (
                            y_sinks[i] > (-radius + center[1]) * lbox_au) & (
                                y_sinks[i] < (radius + center[1]) * lbox_au):
                        plt.plot(x_sinks[i],
                                 y_sinks[i],
                                 '.',
                                 color=color_sink_velmap,
                                 markersize=size_sinks[i],
                                 alpha=transparence_sink_velmap)
            plt.xlabel('$x$ (AU)')
            plt.ylabel('$y$ (AU)')
            cbar = plt.colorbar()
            cbar.set_label(r'$v_z \, (km.s^{-1})$')
            if title_time == True:
                plt.title('Time = ' + str(int(simulation_time)) + ' years')
            if title_time_cor == True:
                plt.title('Time = ' + str(int(simulation_time)) +
                          ' years \n Corrected time = ' +
                          str(int(simulation_time - ref[1] * 1e6)) + ' years')
            if radius_zoom == 5:
                plt.xlim([0, lbox_au])
                plt.ylim([0, lbox_au])
            if save == True:
                plt.savefig(path_save + 'vel_z_' + str(radius_zoom) +
                            '_%05d' % num_output + '.png',
                            bbox_inches='tight')
            plt.close()

    if v_proj == True and reposition_fig == True:
        for i in range(3):
            i *= 2
            for j in range(2):
                plt.figure(i + j + 1)
                mngr = plt.get_current_fig_manager()
                geom = mngr.window.geometry()
                x, y, dx, dy = geom.getRect()
                mngr.window.setGeometry(1920 / 3 * (i / 2), 1080 / 2 * j, dx,
                                        dy)

        plt.figure(1)  #Oblige sinon figure 1 mal placee...
        mngr = plt.get_current_fig_manager()
        geom = mngr.window.geometry()
        x, y, dx, dy = geom.getRect()
        #mngr.window.setGeometry(65,52,dx,dy)
        mngr.window.setGeometry(1, 1, dx, dy)

    return
コード例 #13
0
def SFR_calculation(simu,owner,output_min,output_max,colorsink,colorgas,colortot,legend):
    #--------------------------------------------------------------
    #Chemin de la simulation et du dossier de sauvegarde des images
    #--------------------------------------------------------------
    if owner=='averliat':
        path='/mnt/magmist/magmist/simu_B335_averliat/'+simu+'/'
    if owner=='phennebe':
        path='/drf/projets/capucine/'+owner+'/'+simu+'/'
    if owner=='sapanais':
        path='/dsm/anais/storageA/magmist/'+simu+'/'
    if owner=='averliat_alfven':
        path='/drf/projets/alfven-data/averliat/'+simu+'/'
        
    path_analyse='/home/averliat/these/analyses/'+simu+'/'

    path_t0=path





    #------------------------------------------------------------------------
    #Get the properties of the particules with just the particules' positions
    #Copie depuis module_extract.py
    #------------------------------------------------------------------------
    def read_sink_csv(num,directory,no_cvs=None):

        name = directory+'output_'+str(num).zfill(5)+'/sink_'+str(num).zfill(5)+'.csv'
        print 'read sinks from ', name

        if(no_cvs is None):
            sinks = np.loadtxt(name,delimiter=',',ndmin=2,usecols=(0,1,2,3,4,5,6,7,8)) #,9,10,11,12))
        else:
            sinks = np.loadtxt(name,ndmin=2,usecols=(0,1,2,3,4,5,6,7,8,9,10,11,12))

        return sinks



    #---------------------------------------
    #Lecture du fichier sink.csv s'il existe
    #---------------------------------------
    mass_sinks_tab=np.zeros(output_max+1-output_min,dtype=object)
    mass_gas_tab=np.zeros(output_max+1-output_min)
    numero_output=np.zeros(output_max+1-output_min)
    simulation_time=np.zeros(output_max+1-output_min)
    ind_output=0

    for num_output in range(output_min,output_max+1):
        m_sinks=None
        if os.path.isfile(path+'output_'+str(num_output).zfill(5)+'/sink_'+str(num_output).zfill(5)+'.csv') == True:
            sinks=read_sink_csv(num_output,path)
            if len(sinks) != 0:
                m_sinks=sinks[:,1]  #masse des sinks en masses solaires
            else:
                m_sinks=0.



        mass_sinks_tab[ind_output]=np.array(m_sinks)
        numero_output[ind_output]=num_output
        

        
        #-------------------
        #lecture de l'output
        #-------------------
        ro=pymses.RamsesOutput(path,num_output)
        
        amr = ro.amr_source(["rho"])

        cell_source = CellsToPoints(amr)
        cells = cell_source.flatten(verbose=False)
        dx = cells.get_sizes()

        rho = cells["rho"]



        #------------------------------
        #conversion en unites physiques
        #------------------------------
        lbox_au = ro.info['unit_length'].express(cst.au)
        factor_dist= ro.info['unit_length'].express(cst.m)
        factor_vel = ro.info['unit_velocity'].express(cst.m/cst.s)
        factor_rho = ro.info['unit_density'].express(cst.kg/(cst.m)**3)
        
        factor_time_Myr = ro.info['unit_time'].express(cst.Myr)

        simulation_time[ind_output] = ro.info['time']*factor_time_Myr
        
        dx *= factor_dist
        rho *= factor_rho


        mass_tot = np.sum( rho * dx**3 ) / 1.9889e+30  #En Msun
        mass_gas_tab[ind_output]=mass_tot
        

        ind_output+=1


    mass_sinks_sum_tab=np.zeros(output_max+1-output_min)
    for i in range(len(mass_sinks_tab)):
        mass_sinks_sum_tab[i]=np.sum(mass_sinks_tab[i])



    #---------------------------------------------------
    #Trace de la masse des sinks en fonction de l'output
    #---------------------------------------------------
    plt.figure(20)
    plt.plot(numero_output,mass_sinks_sum_tab,linestyle='solid',marker='.',color=colorsink)
    plt.xlabel(r"Numero de l'output")
    plt.ylabel(r"Masse des sinks ($M_\odot$)")


    plt.figure(21)
    plt.plot(simulation_time,mass_sinks_sum_tab,linestyle='solid',marker='.',color=colorsink)
    plt.xlabel(r"Temps (Myr)")
    plt.ylabel(r"Masse des sinks ($M_\odot$)")


    plt.figure(22)
    plt.plot(numero_output,mass_sinks_sum_tab+mass_gas_tab,linestyle='solid',marker='.',color=colortot)
    plt.xlabel(r"Numero de l'output")
    plt.ylabel(r"Masse totale ($M_\odot$)")


    plt.figure(23)
    plt.semilogy(simulation_time,mass_gas_tab,linestyle='solid',marker='.',color=colorgas,label='Gas'+legend)
    plt.semilogy(simulation_time,mass_sinks_sum_tab,linestyle='solid',marker='.',color=colorsink,label='Sinks'+legend)
    plt.semilogy(simulation_time,mass_sinks_sum_tab+mass_gas_tab,linestyle='solid',marker='.',color=colortot,label='Gas + sinks'+legend)
    plt.xlabel(r"Temps (Myr)")
    plt.ylabel(r"Masse ($M_\odot$)")
    plt.legend(loc='best')
コード例 #14
0
def temps_0_simu(path_simu,
                 seuil_rho=1e-10,
                 num_min=2,
                 num_max=150,
                 sortie_output=2):
    #sortie_output=1 nouveau parametre pour prendre en compte si les output sont sortie tous les pas ou tous les n pas de temps (dans ce cas mettre sortie_output=n avec n=2, 3, ...)

    #--------------------------------------------
    #Caracteristiques de la simulation consideree
    #--------------------------------------------
    #simu='/gpfs/data1/averliat/B335_noturb_rot3_hydro/'
    #num_min=1
    #num_max=150  #Pas obligatoirement l'output max, peut depasser

    #seuil_rho = 1e-10  #kg.m^-3

    nmbr_output = num_max - num_min + 1

    #-------------------------------------------------
    #Lecture du temps et des densites de chaque output
    #-------------------------------------------------
    simulation_time = np.zeros(nmbr_output)
    max_rho = np.zeros(nmbr_output)

    output_seuil = 0
    time_seuil = 0

    for l in range(nmbr_output):
        if os.path.isdir(path_simu + 'output_' +
                         str(sortie_output * (l + 1)).zfill(5)) == False:
            print(
                "===========================================================")
            print(
                "===========================================================")
            print("      /!\  Output manquante ou seuil trop haut  /!\ ")
            print(
                "===========================================================")
            print(
                "===========================================================")
            break

        ro = pymses.RamsesOutput(path_simu, sortie_output * (l + 1))

        factor_time_Myr = ro.info['unit_time'].express(cst.Myr)
        simulation_time[l] = ro.info['time'] * factor_time_Myr

        amr = ro.amr_source(["rho"])
        cell_source = CellsToPoints(amr)
        cells = cell_source.flatten()

        rho = cells["rho"]
        factor_rho = ro.info['unit_density'].express(cst.kg / (cst.m)**3)
        rho *= factor_rho

        max_rho[l] = np.max(rho)

        print
        print
        print("===========================================================")
        print('max(rho) =  ' + str(np.max(rho)) + '  kg.m^-3')
        print("===========================================================")
        print
        print
        print

        if max_rho[l] >= seuil_rho:
            output_seuil = sortie_output * (l + 1)
            time_seuil = simulation_time[l]
            print(
                "===========================================================")
            print(
                "===========================================================")
            print("         output_seuil = " + str(output_seuil))
            print("         time_seuil = " + str(time_seuil) + " Myr")
            print(
                "===========================================================")
            print(
                "===========================================================")
            break

    if output_seuil == 0:
        print("===========================================================")
        print("===========================================================")
        print("          /!\  Seuil de densité non atteint  /!\ ")
        print("===========================================================")
        print("===========================================================")
    '''
	plt.semilogy(simulation_time, max_rho, linestyle=None, marker='.')
	plt.show()
	'''

    return (output_seuil, time_seuil)
def temps_0_simu(path_simu,
                 seuil_rho=1e11,
                 critere_mass_seuil=10,
                 num_min=1,
                 num_max=150,
                 sortie_output=1):
    #sortie_output=1 nouveau parametre pour prendre en compte si les output sont sortie tous les pas ou tous les n pas de temps (dans ce cas mettre sortie_output=n avec n=2, 3, ...)

    #--------------------------------------------
    #Caracteristiques de la simulation consideree
    #--------------------------------------------
    #simu='/gpfs/data1/averliat/B335_noturb_rot3_hydro/'
    #num_min=1
    #num_max=150  #Pas obligatoirement l'output max, peut depasser

    #seuil_rho = 1e-10  #kg.m^-3

    nmbr_output = num_max - num_min + 1

    #-------------------------------------------------
    #Lecture du temps et des densites de chaque output
    #-------------------------------------------------
    simulation_time = np.zeros(nmbr_output)
    accreted_mass = np.zeros(nmbr_output)

    output_seuil = 0
    time_seuil = 0

    for l in range(nmbr_output):
        if os.path.isdir(path_simu + 'output_' +
                         str(sortie_output * (l + 1)).zfill(5)) == False:
            print(
                "===========================================================")
            print(
                "===========================================================")
            print("      /!\  Output manquante ou seuil trop haut  /!\ ")
            print(
                "===========================================================")
            print(
                "===========================================================")
            break

        ro = pymses.RamsesOutput(path_simu, sortie_output * (l + 1))

        factor_time_Myr = ro.info['unit_time'].express(cst.Myr)
        simulation_time[l] = ro.info['time'] * factor_time_Myr

        amr = ro.amr_source(["rho"])
        cell_source = CellsToPoints(amr)
        cells = cell_source.flatten(verbose=False)

        dx = cells.get_sizes()
        pos = cells.points
        rho = cells["rho"]

        #------------------------------------------------------------
        #Facteur de conversion des unites de code en unites physiques
        #------------------------------------------------------------
        lbox = ro.info['boxlen']
        lbox_m = ro.info['unit_length'].express(cst.m)
        factor_dist_m = ro.info['unit_length'].express(cst.m)
        factor_dist_cm = ro.info['unit_length'].express(cst.cm)
        lbox_au = ro.info['unit_length'].express(cst.au)
        lbox_cm = ro.info['unit_length'].express(cst.cm)
        factor_time_yr = ro.info['unit_time'].express(cst.year)

        factor_rho_Hcc = ro.info['unit_density'].express(cst.H_cc)
        factor_rho = ro.info['unit_density'].express(cst.kg / (cst.m)**3)

        #------------------------------
        #Conversion en unites physiques
        #------------------------------
        simulation_time_yr = ro.info['time'] * factor_time_yr
        dx *= factor_dist_m
        rho_Hcc = rho * factor_rho_Hcc
        rho *= factor_rho

        #---------------------------------------------------------
        #Definition du centre des images et de leur niveau de zoom
        #---------------------------------------------------------
        mask = rho_Hcc > seuil_rho

        rho_masked = rho[mask]
        dx_masked = dx[mask]

        mass_core = np.sum(rho_masked * dx_masked**3) / 1.9889e+30  #En Msun
        mass_tot = np.sum(rho * dx**3) / 1.9889e+30  #En Msun

        pourcent_mass_core = mass_core / mass_tot * 100

        print
        print
        print(
            "=========================================================================="
        )
        print("    M_central_core = " + str(mass_core) + " Msun")
        print("    M_tot = " + str(mass_tot) + " Msun")
        print("    Pourcent_M_central_core = " + str(pourcent_mass_core) +
              " %")
        print(
            "=========================================================================="
        )
        print
        print

        accreted_mass[l] = pourcent_mass_core

        if accreted_mass[l] >= critere_mass_seuil:
            output_seuil = sortie_output * (l + 1)
            time_seuil = simulation_time[l]
            print(
                "===========================================================")
            print(
                "===========================================================")
            print("         output_seuil = " + str(output_seuil))
            print("         time_seuil = " + str(time_seuil) + " Myr")
            print(
                "===========================================================")
            print(
                "===========================================================")
            break

    if output_seuil == 0:
        print("===========================================================")
        print("===========================================================")
        print("          /!\  Seuil de masse accretee non atteint  /!\ ")
        print("===========================================================")
        print("===========================================================")
    '''
	plt.semilogy(simulation_time, max_rho, linestyle=None, marker='.')
	plt.show()
	'''

    return (output_seuil, time_seuil)
コード例 #16
0
    path = '/dsm/anais/storageA/magmist/' + simu + '/'
if owner == 'averliat_alfven':
    path = '/drf/projets/alfven-data/averliat/' + simu + '/'

#path_save='/home/averliat/these/analyses/'+simu+'/'+dir_save+'/'
path_analyse = '/home/averliat/these/analyses/' + simu + '/'

#-------------------
#Lecture de l'output
#-------------------
ro = pymses.RamsesOutput(path, output)
lbox_pc = ro.info['unit_length'].express(cst.pc)

amr = ro.amr_source(["rho", "vel", "P", "phi", "g"])

cell_source = CellsToPoints(amr)
cells = cell_source.flatten(verbose=False)
dx = cells.get_sizes()

pos = cells.points
vel = cells["vel"]
rho = cells["rho"]

#------------------------------
#Conversion en unites physiques
#------------------------------
lbox_au = ro.info['unit_length'].express(cst.au)
lbox_pc = ro.info['unit_length'].express(cst.pc)
factor_dist = ro.info['unit_length'].express(cst.m)
factor_vel = ro.info['unit_velocity'].express(cst.m / cst.s)
factor_rho = ro.info['unit_density'].express(cst.kg / (cst.m)**3)
コード例 #17
0
def pdf_to_singledisc_rad(path,
                          num,
                          path_out=None,
                          force=False,
                          ps=False,
                          xmin=0,
                          xmax=1.,
                          ymin=0,
                          ymax=1.,
                          zmin=0.,
                          zmax=1.,
                          tag='',
                          order='<',
                          do_plot=False):

    print(num)

    #get the mass weighted density prob density function
    hist_logrho, hist_rho_edges = get_rhopdf(path,
                                             num,
                                             path_out=path_out,
                                             force=force,
                                             ps=ps,
                                             xmin=xmin,
                                             xmax=xmax,
                                             ymin=ymin,
                                             ymax=ymax,
                                             zmin=zmin,
                                             zmax=zmax,
                                             tag=tag,
                                             order=order,
                                             do_plot=do_plot)

    nbin = len(hist_logrho)

    mask_min = hist_rho_edges[0:nbin] > 8.
    mask_max = hist_rho_edges[0:nbin] < 11.

    mask = mask_min * mask_max

    amin = np.argmin(hist_logrho[mask])

    #density at the disk edge
    log_rho_disk = hist_rho_edges[0:nbin][mask][amin]

    print 'log_rho_disk', log_rho_disk

    #    pdb.set_trace() # debug mode

    ro = pymses.RamsesOutput(path, num)
    lbox = ro.info['boxlen']  #boxlen in codeunits (=>pc)

    AU, pc, Ms, Myr, scale_n, scale_d, scale_t, scale_l, scale_v, scale_T2, scale_ener, scale_mag, microG, km_s, Cwnm, scale_mass, unit_col, lbox_pc = me.normalisation_averliat(
        ro)

    time = ro.info['time'] * scale_t / Myr

    amr = ro.amr_source(["rho", "vel", "Br"])

    cell_source = CellsToPoints(amr)
    cells = cell_source.flatten()
    dx = cells.get_sizes()

    pos = cells.points

    #cells belonging to the disk
    mask_rho_disk = np.log10(cells['rho']) > log_rho_disk

    print 'disk cell number', np.sum(mask_rho_disk)

    #mean magnetic field in the whole selected region
    mrd = mask_rho_disk

    #volume of the selected region
    vol = np.sum(dx[mrd]**3)

    mag_mean_broad = np.sum(
        np.sqrt((cells['Br'][:, 0][mrd]**2 + cells['Br'][:, 1][mrd]**2 +
                 cells['Br'][:, 2][mrd]**2)) * dx[mrd]**3) / vol

    #normalise it in cgs
    mag_mean_broad = mag_mean_broad * scale_mag

    #maximum density cell
    mask_rho_max = cells['rho'] == np.max(cells['rho'])

    #mass disk
    mass_disk = np.sum(dx[mask_rho_disk]**3 * cells['rho'][mask_rho_disk])
    mass_disk = mass_disk * scale_mass / Ms

    #position of maximum density cell
    pos_max_x = pos[:, 0][mask_rho_max][0]
    pos_max_y = pos[:, 1][mask_rho_max][0]
    pos_max_z = pos[:, 2][mask_rho_max][0]

    #position of disk cell
    pos_disk_x = pos[:, 0][mask_rho_disk] - pos_max_x
    pos_disk_y = pos[:, 1][mask_rho_disk] - pos_max_y
    pos_disk_z = pos[:, 2][mask_rho_disk] - pos_max_z

    #position of maximum density cell
    vel_max_x = cells['vel'][:, 0][mask_rho_max][0]
    vel_max_y = cells['vel'][:, 1][mask_rho_max][0]
    vel_max_z = cells['vel'][:, 2][mask_rho_max][0]

    #position of disk cell
    vel_disk_x = cells['vel'][:, 0][mask_rho_disk] - vel_max_x
    vel_disk_y = cells['vel'][:, 1][mask_rho_disk] - vel_max_y
    vel_disk_z = cells['vel'][:, 2][mask_rho_disk] - vel_max_z

    #radial component of V
    norm_pos = np.sqrt(pos_disk_x**2 + pos_disk_y**2 + pos_disk_z**2)
    mask = norm_pos == 0.
    norm_pos[mask] = 1.e-10
    Vrad = (vel_disk_x * pos_disk_x + vel_disk_y * pos_disk_y +
            vel_disk_z * pos_disk_z) / norm_pos

    #non radial component of V
    Vpar_x = (vel_disk_z * pos_disk_y - vel_disk_y * pos_disk_z) / norm_pos
    Vpar_y = (vel_disk_x * pos_disk_z - vel_disk_z * pos_disk_x) / norm_pos
    Vpar_z = (vel_disk_y * pos_disk_x - vel_disk_x * pos_disk_y) / norm_pos
    Vpar = np.sqrt(Vpar_x**2 + Vpar_y**2 + Vpar_z**2)
    Vpar[mask] = 1.e-10

    #now select the point that have a parallel velocity larger than the radial one
    mask = (-Vrad) / Vpar < 0.5

    if (np.sum(mask) <= 1):
        return time, 0., 0., 0., 0., log_rho_disk, mag_mean_broad, 0., 0.  #, max_rad_disk, mean_rad_disk, mean_out_rad_disk

    pos_disk_x = pos_disk_x[mask]
    pos_disk_y = pos_disk_y[mask]
    pos_disk_z = pos_disk_z[mask]

    vel_disk_x = vel_disk_x[mask]
    vel_disk_y = vel_disk_y[mask]
    vel_disk_z = vel_disk_z[mask]

    #    print 'sum mask',np.sum(mask),len(pos_disk_x)

    #determine the direction of the mean angular momentum
    Jx = np.mean(pos_disk_y * vel_disk_z - pos_disk_z * vel_disk_y)
    Jy = np.mean(pos_disk_z * vel_disk_x - pos_disk_x * vel_disk_z)
    Jz = np.mean(pos_disk_x * vel_disk_y - pos_disk_y * vel_disk_x)

    Jnorm = np.sqrt(Jx**2 + Jy**2 + Jz**2)
    Jx = Jx / Jnorm
    Jy = Jy / Jnorm
    Jz = Jz / Jnorm

    #project the radial vector in the disk plane
    Jpos = Jx * pos_disk_x + Jy * pos_disk_y + Jz * pos_disk_z
    pos_dpl_x = pos_disk_x - Jpos * Jx
    pos_dpl_y = pos_disk_y - Jpos * Jy
    pos_dpl_z = pos_disk_z - Jpos * Jz

    if (pos_dpl_x[0]**2 + pos_dpl_x[1]**2 + pos_dpl_x[2]**2 != 0.):
        pos_x = pos_dpl_x[0]
        pos_y = pos_dpl_y[0]
        pos_z = pos_dpl_z[0]
    else:
        pos_x = pos_dpl_x[1]
        pos_y = pos_dpl_y[1]
        pos_z = pos_dpl_z[1]

    #calculate the cosinus
    cos_pos = (pos_dpl_x * pos_x + pos_dpl_y * pos_y + pos_dpl_z * pos_z)

    mask = pos_dpl_x * pos_dpl_x + pos_dpl_y * pos_dpl_y + pos_dpl_z * pos_dpl_z > 0.

    cos_pos = cos_pos / np.sqrt(pos_x * pos_x + pos_y * pos_y + pos_z * pos_z)
    cos_pos[mask] = cos_pos[mask] / np.sqrt(pos_dpl_x * pos_dpl_x +
                                            pos_dpl_y * pos_dpl_y +
                                            pos_dpl_z * pos_dpl_z)[mask]

    #radius of disk cells
    #    rad_disk = np.sqrt( (pos_disk[:,0]-pos_max_x)**2 + (pos_disk[:,1]-pos_max_y)**2 + (pos_disk[:,2]-pos_max_z)**2 )
    rad_disk = np.sqrt((pos_disk_x)**2 + (pos_disk_y)**2 + (pos_disk_z)**2)

    #mean disk radius
    mean_rad_disk = np.mean(rad_disk)
    median_rad_disk = np.median(rad_disk)

    arg_d = np.argsort(rad_disk)

    ndisk = len(arg_d)

    print 'ndisk', ndisk

    mask_out_disk = arg_d[np.int(ndisk * 0.9):ndisk - 1]

    #mean radius of the 90% point having higher radius
    mean_out_rad_disk = np.mean(rad_disk[mask_out_disk])

    #now look at the maximum in a series of direction
    ndir = 500
    rad_loc_v = np.zeros(ndir)
    cos_min = -1.
    cos_max = cos_min + 2. / (ndir + 1)
    for ld in range(ndir):

        mask1 = cos_pos >= cos_min
        mask2 = cos_pos < cos_max
        mask = mask1 * mask2

        print 'len mask, sum mask', len(mask), np.sum(mask)

        if (np.sum(mask) != 0):
            #            pdb.set_trace()
            rad_loc_v[ld] = np.max(rad_disk[mask])
        else:
            rad_loc_v[ld] = 0.

        cos_min = cos_min + 2. / (ndir + 1)
        cos_max = cos_max + 2. / (ndir + 1)

    max_rad_loc = np.max(
        rad_loc_v[rad_loc_v < 500 / lbox / pc * AU]) * lbox * pc / AU

    min_rad_loc = np.min(
        rad_loc_v[rad_loc_v < 500 / lbox / pc * AU]) * lbox * pc / AU

    mean_rad_loc = np.mean(
        rad_loc_v[rad_loc_v < 500 / lbox / pc * AU]) * lbox * pc / AU

    median_rad_loc = np.median(
        rad_loc_v[rad_loc_v < 500 / lbox / pc * AU]) * lbox * pc / AU

    #--------------------------
    #Ajout par AV pour essayer de mieux estimer la taille des disques
    rad_loc_v = rad_loc_v * lbox * pc / AU  #listes des rayons en AU

    taille_bin = 4  #AU
    largeur_modale = 2

    min_serie = np.floor(np.min(rad_loc_v))
    min_serie -= min_serie % taille_bin
    max_serie = np.floor(np.max(rad_loc_v)) + 1
    max_serie += (taille_bin - max_serie % taille_bin)

    nbr_bin = (max_serie - min_serie) / taille_bin
    bins = np.arange(nbr_bin) * taille_bin + min_serie + taille_bin / 2.

    count = np.zeros(len(bins))

    for i in range(len(rad_loc_v)):
        ind = np.int(np.floor((rad_loc_v[i] - min_serie) / taille_bin))
        count[ind] += 1

    bin_central = bins[np.argmax(count)]
    lim_inf = bin_central - taille_bin / 2. - largeur_modale * taille_bin
    lim_sup = bin_central + taille_bin / 2. + largeur_modale * taille_bin

    rad_new = rad_loc_v[rad_loc_v > lim_inf]
    rad_new = rad_new[rad_new < lim_sup]

    rad_estim = np.median(rad_new)
    #--------------------------

    mean_rad_disk = mean_rad_disk * lbox * pc / AU

    mean_out_rad_disk = mean_out_rad_disk * lbox * pc / AU

    #    pdb.set_trace() # debug mode

    return time, mass_disk, max_rad_loc, min_rad_loc, mean_rad_loc, log_rho_disk, mag_mean_broad, median_rad_loc, rad_estim  #, max_rad_disk, mean_rad_disk, mean_out_rad_disk
コード例 #18
0
if save==True:
    if os.path.isdir(path_save) == False:
        os.mkdir(path_save)



#-------------------
#Lecture de l'output
#-------------------
ro=pymses.RamsesOutput(path,num_output)
lbox_pc = ro.info['unit_length'].express(cst.pc)

amr = ro.amr_source(["rho","vel","P","phi","g"])

cell_source = CellsToPoints(amr)
cells = cell_source.flatten()

pos = cells.points
rho = cells["rho"]



#------------------------------------------------------------
#Facteur de conversion des unites de code en unites physiques
#------------------------------------------------------------
lbox=ro.info['boxlen']
lbox_m = ro.info['unit_length'].express(cst.m)
lbox_au = ro.info['unit_length'].express(cst.au)
lbox_cm = ro.info['unit_length'].express(cst.cm)
factor_time_yr = ro.info['unit_time'].express(cst.year)
コード例 #19
0
	def fgas_halomass(self, halos=None):

		snapshot = self._snapshot
		ro = snapshot.raw_snapshot()
		amr = ro.amr_source(['rho'])
		parts = ro.particle_source(["mass"])

		#Figure out the smallest possible cell size in code units
		boxlen = ro.info['boxlen']
		lmax = ro.info['levelmax']

		min_dx = boxlen/float(2**(lmax))

		if config.verbose: print 'min_dx=', min_dx

		if (halos == None):
			halos = snapshot.halos()

		if config.verbose: print 'Processing %d halos'%len(halos)

		fgas = []
		mhalo = []

		#z = self._snapshot.current_redshift()
		#a = 1./(1.+z)

		i = 0
		for halo in halos:
			if halo['num_p'] < 150:
				break

			#if tree:
				#Find this halo and count number of progenitors.
				#If too high, skip (frequent mergers -> tidal stripping)

				#idx_tree_halo = (tree._tree[:]['orig_halo_id'] == halo['id'].value) &\
				#		 (tree._tree[:]['snap_num'] == snapshot.rockstar_output_number())
				#print idx_tree_halo
				#tree_halo = tree._tree[idx_tree_halo]
				#assert(len(tree_halo)==1)
				#all_halos = []
				#tree.find_progs(np.array([tree_halo]), all_halos)
				#num_progs = len(all_halos)
				#print 'Halo %d has %d progenitors'%(halo['id'], num_progs)
				#if num_progs > 150: continue

			#Create the sphere
			cen = halo['pos'].in_units('code_length').value
			r = halo['Rvir'].in_units('code_length').value
			r_amr = float(r)

			#If the halo radius is smaller than the min cell size,
			#we need to try and approximate the masses enclosed.
			#Not sure how correct this is...
			factor = 1
			if r < min_dx:
				r_amr += min_dx
				vol_halo = (4./3.)*np.pi*r**3
				vol_cell = (4./3.)*np.pi*r_amr**3
				factor = vol_halo/vol_cell

			#Define the regions
			region_part = Sphere(cen, r)
			region_amr = Sphere(cen, r_amr)

			#Filter the particles
			filt_parts = RegionFilter(region_part, parts)
			part_source = filt_parts.flatten()
			part_mass = part_source['mass']*ro.info['unit_mass'].express(C.Msun)

			#Filter the AMR data
			filt_amr = RegionFilter(region_amr, amr)
			cell_source = CellsToPoints(filt_amr)
			cells = cell_source.flatten()
			rho = cells['rho']*ro.info['unit_density'].express(C.Msun/C.kpc**3)
			vol = (cells.get_sizes()*ro.info['unit_length'].express(C.kpc))**3
			cell_mass = rho*vol

			#Compute the total mass enclosed
			gas_mass = np.sum(cell_mass)*factor # Multiply by factor incase we had to inflate the sphere
			particle_mass = np.sum(part_mass)
			total_mass = gas_mass + particle_mass

			fgas.append(gas_mass/total_mass)
			mhalo.append(total_mass)

			i+=1
			#print i
			if(config.verbose and (i%100)==0): print 'Processes %d halos...'%i
		return np.array(fgas), np.array(mhalo)