コード例 #1
0
from pynamics.variable_types import Differentiable, Constant
from pynamics.system import System
from pynamics.body import Body
from pynamics.dyadic import Dyadic
from pynamics.output import Output, PointsOutput
from pynamics.particle import Particle
from pynamics.constraint import AccelerationConstraint
import pynamics.integration

import sympy
import numpy
import matplotlib.pyplot as plt
plt.ion()
from math import pi
system = System()
pynamics.set_system(__name__, system)

tol = 1e-7

l = Constant(.5, 'l', system)
q0 = Constant(0, 'q0', system)

M = Constant(10, 'M', system)
m = Constant(10, 'm', system)

I_xx = Constant(9, 'I_xx', system)
I_yy = Constant(9, 'I_yy', system)
I_zz = Constant(9, 'I_zz', system)

g = Constant(9.81, 'g', system)
b = Constant(1e3, 'b', system)
コード例 #2
0
def Cal_system(initial_states, drag_direction, tinitial, tstep, tfinal,
               fit_vel, f1, f2):

    g_k, g_b_damping, g_b_damping1 = [0.30867935, 1.42946955, 1.08464536]
    system = System()
    pynamics.set_system(__name__, system)

    global_q = True

    lO = Constant(7 / 1000, 'lO', system)
    lA = Constant(33 / 1000, 'lA', system)
    lB = Constant(33 / 1000, 'lB', system)
    lC = Constant(33 / 1000, 'lC', system)

    mO = Constant(10 / 1000, 'mA', system)
    mA = Constant(2.89 / 1000, 'mA', system)
    mB = Constant(2.89 / 1000, 'mB', system)
    mC = Constant(2.89 / 1000, 'mC', system)
    k = Constant(g_k, 'k', system)
    k1 = Constant(0.4, 'k1', system)

    friction_perp = Constant(f1, 'f_perp', system)
    friction_par = Constant(f2, 'f_par', system)
    b_damping = Constant(g_b_damping, 'b_damping', system)
    b_damping1 = Constant(g_b_damping1, 'b_damping1', system)

    preload0 = Constant(0 * pi / 180, 'preload0', system)
    preload1 = Constant(0 * pi / 180, 'preload1', system)
    preload2 = Constant(0 * pi / 180, 'preload2', system)
    preload3 = Constant(0 * pi / 180, 'preload3', system)

    Ixx_O = Constant(1, 'Ixx_O', system)
    Iyy_O = Constant(1, 'Iyy_O', system)
    Izz_O = Constant(1, 'Izz_O', system)
    Ixx_A = Constant(1, 'Ixx_A', system)
    Iyy_A = Constant(1, 'Iyy_A', system)
    Izz_A = Constant(1, 'Izz_A', system)
    Ixx_B = Constant(1, 'Ixx_B', system)
    Iyy_B = Constant(1, 'Iyy_B', system)
    Izz_B = Constant(1, 'Izz_B', system)
    Ixx_C = Constant(1, 'Ixx_C', system)
    Iyy_C = Constant(1, 'Iyy_C', system)
    Izz_C = Constant(1, 'Izz_C', system)

    y, y_d, y_dd = Differentiable('y', system)
    qO, qO_d, qO_dd = Differentiable('qO', system)
    qA, qA_d, qA_dd = Differentiable('qA', system)
    qB, qB_d, qB_dd = Differentiable('qB', system)
    qC, qC_d, qC_dd = Differentiable('qC', system)

    fit_states = initial_states

    initialvalues = {}
    initialvalues[y] = fit_states[0]
    initialvalues[y_d] = fit_states[5]
    initialvalues[qO] = 0
    initialvalues[qO_d] = 0
    initialvalues[qA] = fit_states[2]
    initialvalues[qA_d] = fit_states[7]
    initialvalues[qB] = fit_states[3]
    initialvalues[qB_d] = fit_states[8]
    initialvalues[qC] = fit_states[4]
    initialvalues[qC_d] = fit_states[9]

    statevariables = system.get_state_variables()
    ini = [initialvalues[item] for item in statevariables]

    N = Frame('N')
    O = Frame('O')
    A = Frame('A')
    B = Frame('B')
    C = Frame('C')

    system.set_newtonian(N)
    if not global_q:
        O.rotate_fixed_axis_directed(N, [0, 0, 1], qO, system)
        A.rotate_fixed_axis_directed(O, [0, 0, 1], qA, system)
        B.rotate_fixed_axis_directed(A, [0, 0, 1], qB, system)
        C.rotate_fixed_axis_directed(B, [0, 0, 1], qC, system)
    else:
        O.rotate_fixed_axis_directed(N, [0, 0, 1], qO, system)
        A.rotate_fixed_axis_directed(N, [0, 0, 1], qA, system)
        B.rotate_fixed_axis_directed(N, [0, 0, 1], qB, system)
        C.rotate_fixed_axis_directed(N, [0, 0, 1], qC, system)

    pNO = 0 * N.x + y * N.y
    pOA = lO * N.x + y * N.y
    pAB = pOA + lA * A.x
    pBC = pAB + lB * B.x
    pCtip = pBC + lC * C.x

    pOcm = pNO + lO / 2 * N.x
    pAcm = pOA + lA / 2 * A.x
    pBcm = pAB + lB / 2 * B.x
    pCcm = pBC + lC / 2 * C.x

    wNO = N.getw_(O)
    wOA = N.getw_(A)
    wAB = A.getw_(B)
    wBC = B.getw_(C)

    IO = Dyadic.build(O, Ixx_O, Iyy_O, Izz_O)
    IA = Dyadic.build(A, Ixx_A, Iyy_A, Izz_A)
    IB = Dyadic.build(B, Ixx_B, Iyy_B, Izz_B)
    IC = Dyadic.build(C, Ixx_C, Iyy_C, Izz_C)

    BodyO = Body('BodyO', O, pOcm, mO, IO, system)
    BodyA = Body('BodyA', A, pAcm, mA, IA, system)
    BodyB = Body('BodyB', B, pBcm, mB, IB, system)
    BodyC = Body('BodyC', C, pCcm, mC, IC, system)

    # vOcm = pOcm.time_derivative()
    vAcm = pAcm.time_derivative()
    vBcm = pBcm.time_derivative()
    vCcm = pCcm.time_derivative()

    # system.add_spring_force1(k1+10000*(qA+abs(qA)),(qA-qO-preload1)*N.z,wOA)
    # system.add_spring_force1(k+10000*(qB+abs(qB)),(qB-qA-preload2)*N.z,wAB)
    # system.add_spring_force1(k+10000*(qC+abs(qC)),(qC-qB-preload3)*N.z,wBC)

    system.add_spring_force1(k1, (qA - qO - preload1) * N.z, wOA)
    system.add_spring_force1(k, (qB - qA - preload2) * N.z, wAB)
    system.add_spring_force1(k, (qC - qB - preload3) * N.z, wBC)

    #new Method use nJoint
    nvAcm = 1 / vAcm.length() * vAcm
    nvBcm = 1 / vBcm.length() * vBcm
    nvCcm = 1 / vCcm.length() * vCcm

    vSoil = drag_direction * 1 * N.y
    nSoil = 1 / vSoil.length() * vSoil

    if fit_vel == 0:
        vSoil = 1 * 1 * N.y
        nSoil = 1 / vSoil.length() * vSoil

        faperp = friction_perp * nSoil.dot(A.y) * A.y
        fapar = friction_par * nSoil.dot(A.x) * A.x
        system.addforce(-(faperp + fapar), vAcm)

        fbperp = friction_perp * nSoil.dot(B.y) * B.y
        fbpar = friction_par * nSoil.dot(B.x) * B.x
        system.addforce(-(fbperp + fbpar), vBcm)

        fcperp = friction_perp * nSoil.dot(C.y) * C.y
        fcpar = friction_par * nSoil.dot(C.x) * C.x
        system.addforce(-(fcperp + fcpar), vCcm)
    else:
        faperp = friction_perp * nvAcm.dot(A.y) * A.y
        fapar = friction_par * nvAcm.dot(A.x) * A.x
        system.addforce(-(faperp + fapar), vAcm)

        fbperp = friction_perp * nvBcm.dot(B.y) * B.y
        fbpar = friction_par * nvBcm.dot(B.x) * B.x
        system.addforce(-(fbperp + fbpar), vBcm)

        fcperp = friction_perp * nvCcm.dot(C.y) * C.y
        fcpar = friction_par * nvCcm.dot(C.x) * C.x
        system.addforce(-(fcperp + fcpar), vCcm)

    system.addforce(-b_damping1 * wOA, wOA)
    system.addforce(-b_damping * wAB, wAB)
    system.addforce(-b_damping * wBC, wBC)

    eq = []
    eq_d = [(system.derivative(item)) for item in eq]

    eq_d.append(y_d - fit_vel)
    eq_dd = [(system.derivative(item)) for item in eq_d]

    f, ma = system.getdynamics()
    func1 = system.state_space_post_invert(f, ma, eq_dd)

    points = [pNO, pOA, pAB, pBC, pCtip]

    constants = system.constant_values
    states = pynamics.integration.integrate_odeint(func1,
                                                   ini,
                                                   t,
                                                   args=({
                                                       'constants': constants
                                                   }, ))

    points_output = PointsOutput(points, system, constant_values=constants)
    y = points_output.calc(states)
    final = numpy.asarray(states[-1, :])
    time1 = time.time()
    points_output.animate(fps=30,
                          movie_name=str(time1) + 'video_1.mp4',
                          lw=2,
                          marker='o',
                          color=(1, 0, 0, 1),
                          linestyle='-')
    return final, states, y, system
def init_system(v, drag_direction, time_step):
    import pynamics
    from pynamics.frame import Frame
    from pynamics.variable_types import Differentiable, Constant
    from pynamics.system import System
    from pynamics.body import Body
    from pynamics.dyadic import Dyadic
    from pynamics.output import Output, PointsOutput
    from pynamics.particle import Particle
    import pynamics.integration
    import logging
    import sympy
    import numpy
    import matplotlib.pyplot as plt
    from math import pi
    from scipy import optimize
    from sympy import sin
    import pynamics.tanh as tanh

    from fit_qs import exp_fit
    import fit_qs

    # time_step = tstep
    x = numpy.zeros((7, 1))
    friction_perp = x[0]
    friction_par = x[1]
    given_b = x[2]
    given_k = x[3]
    given_k1 = x[4]
    given_b1 = x[4]
    system = System()
    pynamics.set_system(__name__, system)
    global_q = True

    lO = Constant(7 / 1000, 'lO', system)
    lA = Constant(33 / 1000, 'lA', system)
    lB = Constant(33 / 1000, 'lB', system)
    lC = Constant(33 / 1000, 'lC', system)

    mO = Constant(10 / 1000, 'mA', system)
    mA = Constant(2.89 / 1000, 'mA', system)
    mB = Constant(2.89 / 1000, 'mB', system)
    mC = Constant(2.89 / 1000, 'mC', system)
    k = Constant(0.209, 'k', system)
    k1 = Constant(0.209, 'k1', system)

    friction_perp = Constant(1.2, 'f_perp', system)
    friction_par = Constant(-0.2, 'f_par', system)
    b_damping = Constant(given_b, 'b_damping', system)

    # time_step = 1/00

    if v == 0:
        [
            t, tinitial, tfinal, tstep, qAa1, qAb1, qAc1, qAa2, qAb2, qAc2,
            qAa3, qAb3, qAc3, qBa1, qBb1, qBc1, qBa2, qBb2, qBc2, qBa3, qBb3,
            qBc3, qCa1, qCb1, qCc1, qCa2, qCb2, qCc2, qCa3, qCb3, qCc3
        ] = fit_qs.fit_0_amount(time_step)
    elif v == 10:
        [
            t, tinitial, tfinal, tstep, qAa1, qAb1, qAc1, qAa2, qAb2, qAc2,
            qAa3, qAb3, qAc3, qBa1, qBb1, qBc1, qBa2, qBb2, qBc2, qBa3, qBb3,
            qBc3, qCa1, qCb1, qCc1, qCa2, qCb2, qCc2, qCa3, qCb3, qCc3
        ] = fit_qs.fit_10_amount(time_step)
    elif v == 20:
        [
            t, tinitial, tfinal, tstep, qAa1, qAb1, qAc1, qAa2, qAb2, qAc2,
            qAa3, qAb3, qAc3, qBa1, qBb1, qBc1, qBa2, qBb2, qBc2, qBa3, qBb3,
            qBc3, qCa1, qCb1, qCc1, qCa2, qCb2, qCc2, qCa3, qCb3, qCc3
        ] = fit_qs.fit_20_amount(time_step)
    elif v == 30:
        [
            t, tinitial, tfinal, tstep, qAa1, qAb1, qAc1, qAa2, qAb2, qAc2,
            qAa3, qAb3, qAc3, qBa1, qBb1, qBc1, qBa2, qBb2, qBc2, qBa3, qBb3,
            qBc3, qCa1, qCb1, qCc1, qCa2, qCb2, qCc2, qCa3, qCb3, qCc3
        ] = fit_qs.fit_30_amount(time_step)
    elif v == 40:
        [
            t, tinitial, tfinal, tstep, qAa1, qAb1, qAc1, qAa2, qAb2, qAc2,
            qAa3, qAb3, qAc3, qBa1, qBb1, qBc1, qBa2, qBb2, qBc2, qBa3, qBb3,
            qBc3, qCa1, qCb1, qCc1, qCa2, qCb2, qCc2, qCa3, qCb3, qCc3
        ] = fit_qs.fit_40_amount(time_step)
    elif v == 50:
        [
            t, tinitial, tfinal, tstep, qAa1, qAb1, qAc1, qAa2, qAb2, qAc2,
            qAa3, qAb3, qAc3, qBa1, qBb1, qBc1, qBa2, qBb2, qBc2, qBa3, qBb3,
            qBc3, qCa1, qCb1, qCc1, qCa2, qCb2, qCc2, qCa3, qCb3, qCc3
        ] = fit_qs.fit_50_amount(time_step)

    distance = 200 / 1000

    nums = int(tfinal / tstep)
    array_num = numpy.arange(0, nums)
    array_num1 = numpy.repeat(array_num, nums, axis=0)
    array_num1.shape = (nums, nums)
    error_k = array_num1 / 8000 + numpy.ones((nums, nums))

    fit_t = t
    fit_qA = exp_fit(fit_t, qAa1, qAb1, qAc1, qAa2, qAb2, qAc2, qAa3, qAb3,
                     qAc3)
    fit_qB = exp_fit(fit_t, qBa1, qBb1, qBc1, qBa2, qBb2, qBc2, qBa3, qBb3,
                     qBc3)
    fit_qC = exp_fit(fit_t, qCa1, qCb1, qCc1, qCa2, qCb2, qCc2, qCa3, qCb3,
                     qCc3)
    fit_qAd1 = numpy.diff(fit_qA) / numpy.diff(fit_t)
    fit_qAd = numpy.append(fit_qAd1[0], fit_qAd1)
    fit_qBd1 = numpy.diff(fit_qB) / numpy.diff(fit_t)
    fit_qBd = numpy.append(fit_qBd1[0], fit_qBd1)
    fit_qCd1 = numpy.diff(fit_qC) / numpy.diff(fit_t)
    fit_qCd = numpy.append(fit_qCd1[0], fit_qCd1)

    fit_states1 = numpy.stack(
        (fit_qA, fit_qB, fit_qC, fit_qAd, fit_qBd, fit_qCd), axis=1)
    fit_states1[:, 0:3] = fit_states1[:, 0:3] - fit_states1[0, 0:3]
    fit_states = -drag_direction * numpy.deg2rad(fit_states1)

    # plt.plot(t,fit_states)

    if drag_direction == -1:
        zero_shape = fit_states.shape
        fit_states = numpy.zeros(zero_shape)

    fit_vel = drag_direction * distance / (tfinal)

    if qAa1 == 0:
        fit_vel = 0
    fit_v = numpy.ones(t.shape) * fit_vel

    if qAa1 == 0:
        fit_d = numpy.ones(t.shape) * fit_vel
    else:
        fit_d = drag_direction * numpy.r_[tinitial:distance:tstep *
                                          abs(fit_vel)]

    preload0 = Constant(0 * pi / 180, 'preload0', system)
    preload1 = Constant(0 * pi / 180, 'preload1', system)
    preload2 = Constant(0 * pi / 180, 'preload2', system)
    preload3 = Constant(0 * pi / 180, 'preload3', system)

    Ixx_O = Constant(1, 'Ixx_O', system)
    Iyy_O = Constant(1, 'Iyy_O', system)
    Izz_O = Constant(1, 'Izz_O', system)
    Ixx_A = Constant(1, 'Ixx_A', system)
    Iyy_A = Constant(1, 'Iyy_A', system)
    Izz_A = Constant(1, 'Izz_A', system)
    Ixx_B = Constant(1, 'Ixx_B', system)
    Iyy_B = Constant(1, 'Iyy_B', system)
    Izz_B = Constant(1, 'Izz_B', system)
    Ixx_C = Constant(1, 'Ixx_C', system)
    Iyy_C = Constant(1, 'Iyy_C', system)
    Izz_C = Constant(1, 'Izz_C', system)

    y, y_d, y_dd = Differentiable('y', system)
    qO, qO_d, qO_dd = Differentiable('qO', system)
    qA, qA_d, qA_dd = Differentiable('qA', system)
    qB, qB_d, qB_dd = Differentiable('qB', system)
    qC, qC_d, qC_dd = Differentiable('qC', system)

    initialvalues = {}
    initialvalues[y] = 0 + 1e-14
    initialvalues[y_d] = fit_vel + 1e-14
    initialvalues[qO] = 0 + 1e-14
    initialvalues[qO_d] = 0 + 1e-14
    initialvalues[qA] = fit_states[0, 0] + 1e-14
    initialvalues[qA_d] = fit_states[0, 3] + 1e-14
    initialvalues[qB] = fit_states[0, 1] + 1e-14
    initialvalues[qB_d] = fit_states[0, 4] + 1e-14
    initialvalues[qC] = fit_states[0, 2] + 1e-14
    initialvalues[qC_d] = fit_states[0, 5] + 1e-14

    statevariables = system.get_state_variables()
    ini = [initialvalues[item] for item in statevariables]

    N = Frame('N')
    O = Frame('O')
    A = Frame('A')
    B = Frame('B')
    C = Frame('C')

    drag_direction = drag_direction
    velocity = 200 / tfinal / 1000
    vSoil = drag_direction * velocity * N.y
    nSoil = 1 / vSoil.length() * vSoil

    system.set_newtonian(N)
    if not global_q:
        O.rotate_fixed_axis_directed(N, [0, 0, 1], qO, system)
        A.rotate_fixed_axis_directed(O, [0, 0, 1], qA, system)
        B.rotate_fixed_axis_directed(A, [0, 0, 1], qB, system)
        C.rotate_fixed_axis_directed(B, [0, 0, 1], qC, system)
    else:
        O.rotate_fixed_axis_directed(N, [0, 0, 1], qO, system)
        A.rotate_fixed_axis_directed(N, [0, 0, 1], qA, system)
        B.rotate_fixed_axis_directed(N, [0, 0, 1], qB, system)
        C.rotate_fixed_axis_directed(N, [0, 0, 1], qC, system)

    pNO = 0 * N.x + y * N.y
    pOA = lO * N.x + y * N.y
    pAB = pOA + lA * A.x
    pBC = pAB + lB * B.x
    pCtip = pBC + lC * C.x

    pOcm = pNO + lO / 2 * N.x
    pAcm = pOA + lA / 2 * A.x
    pBcm = pAB + lB / 2 * B.x
    pCcm = pBC + lC / 2 * C.x

    wNO = N.getw_(O)
    wOA = N.getw_(A)
    wAB = A.getw_(B)
    wBC = B.getw_(C)

    IO = Dyadic.build(O, Ixx_O, Iyy_O, Izz_O)
    IA = Dyadic.build(A, Ixx_A, Iyy_A, Izz_A)
    IB = Dyadic.build(B, Ixx_B, Iyy_B, Izz_B)
    IC = Dyadic.build(C, Ixx_C, Iyy_C, Izz_C)

    BodyO = Body('BodyO', O, pOcm, mO, IO, system)
    BodyA = Body('BodyA', A, pAcm, mA, IA, system)
    BodyB = Body('BodyB', B, pBcm, mB, IB, system)
    BodyC = Body('BodyC', C, pCcm, mC, IC, system)
    # BodyC = Particle(pCcm,mC,'ParticleC',system)

    vOcm = pOcm.time_derivative()
    vAcm = pAcm.time_derivative()
    vBcm = pBcm.time_derivative()
    vCcm = pCcm.time_derivative()

    system.add_spring_force1(k1 + 10000 * (qA + abs(qA)),
                             (qA - qO - preload1) * N.z, wOA)
    system.add_spring_force1(k + 10000 * (qB + abs(qB)),
                             (qB - qA - preload2) * N.z, wAB)
    system.add_spring_force1(k + 10000 * (qC + abs(qC)),
                             (qC - qB - preload3) * N.z, wBC)

    #new Method use nJoint
    nvAcm = 1 / vAcm.length() * vAcm
    nvBcm = 1 / vBcm.length() * vBcm
    nvCcm = 1 / vCcm.length() * vCcm

    faperp = friction_perp * nvAcm.dot(A.y) * A.y
    fapar = friction_par * nvAcm.dot(A.x) * A.x
    system.addforce(-(faperp + fapar), vAcm)

    fbperp = friction_perp * nvBcm.dot(B.y) * B.y
    fbpar = friction_par * nvBcm.dot(B.x) * B.x
    system.addforce(-(fbperp + fbpar), vBcm)

    fcperp = friction_perp * nvCcm.dot(C.y) * C.y
    fcpar = friction_par * nvCcm.dot(C.x) * C.x
    system.addforce(-(fcperp + fcpar), vCcm)

    system.addforce(-b_damping * wOA, wOA)
    system.addforce(-b_damping * wAB, wAB)
    system.addforce(-b_damping * wBC, wBC)
    eq = []
    eq_d = [(system.derivative(item)) for item in eq]

    eq_d.append(y_d - fit_vel)
    eq_dd = [(system.derivative(item)) for item in eq_d]

    f, ma = system.getdynamics()
    func1 = system.state_space_post_invert(f, ma, eq_dd)
    points = [pNO, pOA, pAB, pBC, pCtip]
    constants = system.constant_values

    return system, f, ma, func1, points, t, ini, constants, b_damping, k, k1, tstep, fit_states
def Cal_robot(direction, given_l, omega1, t1, t2, ini_states, name1, system,
              video_on, x1):
    time_a = time.time()
    pynamics.set_system(__name__, system)
    given_k, given_b = x1
    global_q = True

    damping_r = 0
    tinitial = 0
    tfinal = (t1 - t2) / omega1
    tstep = 1 / 30
    t = numpy.r_[tinitial:tfinal:tstep]

    tol_1 = 1e-6
    tol_2 = 1e-6
    lO = Constant(27.5 / 1000, 'lO', system)
    lR = Constant(40.5 / 1000, 'lR', system)
    lA = Constant(given_l / 1000, 'lA', system)
    lB = Constant(given_l / 1000, 'lB', system)
    lC = Constant(given_l / 1000, 'lC', system)

    mO = Constant(154.5 / 1000, 'mO', system)
    mR = Constant(9.282 / 1000, 'mR', system)
    mA = Constant(given_l * 2.75 * 0.14450000000000002 / 1000, 'mA', system)
    mB = Constant(given_l * 2.75 * 0.14450000000000002 / 1000, 'mB', system)
    mC = Constant(given_l * 2.75 * 0.14450000000000002 / 1000, 'mC', system)
    k = Constant(given_k, 'k', system)

    friction_perp = Constant(13 / 3, 'f_perp', system)
    friction_par = Constant(-2 / 3, 'f_par', system)
    friction_arm_perp = Constant(5.6, 'fr_perp', system)
    friction_arm_par = Constant(-0.2, 'fr_par', system)
    b_damping = Constant(given_b, 'b_damping', system)

    preload0 = Constant(0 * pi / 180, 'preload0', system)
    preload1 = Constant(0 * pi / 180, 'preload1', system)
    preload2 = Constant(0 * pi / 180, 'preload2', system)
    preload3 = Constant(0 * pi / 180, 'preload3', system)

    Ixx_O = Constant(1, 'Ixx_O', system)
    Iyy_O = Constant(1, 'Iyy_O', system)
    Izz_O = Constant(1, 'Izz_O', system)
    Ixx_R = Constant(1, 'Ixx_R', system)
    Iyy_R = Constant(1, 'Iyy_R', system)
    Izz_R = Constant(1, 'Izz_R', system)
    Ixx_A = Constant(1, 'Ixx_A', system)
    Iyy_A = Constant(1, 'Iyy_A', system)
    Izz_A = Constant(1, 'Izz_A', system)
    Ixx_B = Constant(1, 'Ixx_B', system)
    Iyy_B = Constant(1, 'Iyy_B', system)
    Izz_B = Constant(1, 'Izz_B', system)
    Ixx_C = Constant(1, 'Ixx_C', system)
    Iyy_C = Constant(1, 'Iyy_C', system)
    Izz_C = Constant(1, 'Izz_C', system)

    y, y_d, y_dd = Differentiable('y', system)
    qO, qO_d, qO_dd = Differentiable('qO', system)
    qR, qR_d, qR_dd = Differentiable('qR', system)
    qA, qA_d, qA_dd = Differentiable('qA', system)
    qB, qB_d, qB_dd = Differentiable('qB', system)
    qC, qC_d, qC_dd = Differentiable('qC', system)

    initialvalues = {}
    initialvalues[y] = ini_states[0] + tol_1
    initialvalues[qO] = ini_states[1] + tol_1
    initialvalues[qR] = ini_states[2] + tol_1
    initialvalues[qA] = ini_states[3] + tol_1
    initialvalues[qB] = ini_states[4] + tol_1
    initialvalues[qC] = ini_states[5] + tol_1

    initialvalues[y_d] = ini_states[6] + tol_1
    initialvalues[qO_d] = ini_states[7] + tol_1
    initialvalues[qR_d] = ini_states[8] + tol_1
    initialvalues[qA_d] = ini_states[9] + tol_1
    initialvalues[qB_d] = ini_states[10] + tol_1
    initialvalues[qC_d] = ini_states[11] + tol_1

    statevariables = system.get_state_variables()
    ini = [initialvalues[item] for item in statevariables]
    N = Frame('N')
    O = Frame('O')
    R = Frame('R')
    A = Frame('A')
    B = Frame('B')
    C = Frame('C')

    system.set_newtonian(N)
    if not global_q:
        O.rotate_fixed_axis_directed(N, [0, 0, 1], qO, system)
        R.rotate_fixed_axis_directed(O, [0, 0, 1], qR, system)
        A.rotate_fixed_axis_directed(R, [0, 0, 1], qA, system)
        B.rotate_fixed_axis_directed(A, [0, 0, 1], qB, system)
        C.rotate_fixed_axis_directed(B, [0, 0, 1], qC, system)
    else:
        O.rotate_fixed_axis_directed(N, [0, 0, 1], qO, system)
        R.rotate_fixed_axis_directed(N, [0, 0, 1], qR, system)
        A.rotate_fixed_axis_directed(N, [0, 0, 1], qA, system)
        B.rotate_fixed_axis_directed(N, [0, 0, 1], qB, system)
        C.rotate_fixed_axis_directed(N, [0, 0, 1], qC, system)

    pNO = 0 * N.x + y * N.y
    pOR = pNO + lO * N.x
    pRA = pOR + lR * R.x
    pAB = pRA + lA * A.x
    pBC = pAB + lB * B.x
    pCtip = pBC + lC * C.x

    pOcm = pNO + lO / 2 * N.x
    pRcm = pOR + lR / 2 * R.x
    pAcm = pRA + lA / 2 * A.x
    pBcm = pAB + lB / 2 * B.x
    pCcm = pBC + lC / 2 * C.x

    wNO = N.getw_(O)
    wOR = N.getw_(R)
    wRA = R.getw_(A)
    wAB = A.getw_(B)
    wBC = B.getw_(C)

    IO = Dyadic.build(O, Ixx_O, Iyy_O, Izz_O)
    IR = Dyadic.build(R, Ixx_R, Iyy_R, Izz_R)
    IA = Dyadic.build(A, Ixx_A, Iyy_A, Izz_A)
    IB = Dyadic.build(B, Ixx_B, Iyy_B, Izz_B)
    IC = Dyadic.build(C, Ixx_C, Iyy_C, Izz_C)

    BodyO = Body('BodyO', O, pOcm, mO, IO, system)
    BodyR = Body('BodyR', R, pRcm, mR, IR, system)
    BodyA = Body('BodyA', A, pAcm, mA, IA, system)
    BodyB = Body('BodyB', B, pBcm, mB, IB, system)
    BodyC = Body('BodyC', C, pCcm, mC, IC, system)

    j_tol = 3 * pi / 180
    inv_k = 10
    system.add_spring_force1(k + inv_k * (qA - qR + abs(qA - qR - j_tol)),
                             (qA - qR - preload1) * N.z, wRA)
    system.add_spring_force1(k + inv_k * (qB - qA + abs(qB - qA - j_tol)),
                             (qB - qA - preload2) * N.z, wAB)
    system.add_spring_force1(k + inv_k * (qC - qB + abs(qC - qB - j_tol)),
                             (qC - qB - preload3) * N.z, wBC)

    vOcm = y_d * N.y
    vRcm = pRcm.time_derivative()
    vAcm = pAcm.time_derivative()
    vBcm = pBcm.time_derivative()
    vCcm = pCcm.time_derivative()

    nvRcm = 1 / (vRcm.length() + tol_1) * vRcm
    nvAcm = 1 / (vAcm.length() + tol_1) * vAcm
    nvBcm = 1 / (vBcm.length() + tol_1) * vBcm
    nvCcm = 1 / (vCcm.length() + tol_1) * vCcm

    vSoil = -direction * 1 * N.y
    nSoil = 1 / vSoil.length() * vSoil
    foperp = 8 * nSoil
    system.addforce(-foperp, vOcm)

    frperp = friction_arm_perp * nvRcm.dot(R.y) * R.y
    frpar = friction_arm_par * nvRcm.dot(R.x) * R.x
    system.addforce(-(frperp + frpar), vRcm)

    faperp = friction_perp * nvAcm.dot(A.y) * A.y
    fapar = friction_par * nvAcm.dot(A.x) * A.x
    system.addforce(-(faperp + fapar), vAcm)

    fbperp = friction_perp * nvBcm.dot(B.y) * B.y
    fbpar = friction_par * nvBcm.dot(B.x) * B.x
    system.addforce(-(fbperp + fbpar), vBcm)

    fcperp = friction_perp * nvCcm.dot(C.y) * C.y
    fcpar = friction_par * nvCcm.dot(C.x) * C.x
    system.addforce(-(fcperp + fcpar), vCcm)

    system.addforce(-b_damping * 1 * wRA, wRA)
    system.addforce(-b_damping * 1 * wAB, wAB)
    system.addforce(-b_damping * 1 * wBC, wBC)

    eq = []
    eq_d = [(system.derivative(item)) for item in eq]
    eq_d.append(qR_d - omega1)
    eq_dd = [(system.derivative(item)) for item in eq_d]

    f, ma = system.getdynamics()
    func1 = system.state_space_post_invert(f, ma, eq_dd)
    points = [pNO, pOR, pRA, pAB, pBC, pCtip]

    constants = system.constant_values
    states = pynamics.integration.integrate_odeint(func1,
                                                   ini,
                                                   t,
                                                   args=({
                                                       'constants': constants
                                                   }, ))
    final = numpy.asarray(states[-1, :])

    logger1 = logging.getLogger('pynamics.system')
    logger2 = logging.getLogger('pynamics.integration')
    logger3 = logging.getLogger('pynamics.output')
    logger1.disabled = True
    logger2.disabled = True
    logger3.disabled = True
    points_output = PointsOutput(points, system, constant_values=constants)

    y1 = points_output.calc(states)
    if video_on == 1:
        plt.figure()
        plt.plot(*(y1[::int(len(y1) / 20)].T) * 1000)
        plt.axis('equal')
        plt.axis('equal')
        plt.title("Plate Configuration vs Distance")
        plt.xlabel("Configuration")
        plt.ylabel("Distance (mm)")

        plt.figure()
        plt.plot(t, numpy.rad2deg(states[:, 2]))
        plt.plot(t, numpy.rad2deg(states[:, 8]))
        plt.legend(["qR", "qR_d"])
        plt.hlines(numpy.rad2deg(t1), tinitial, tfinal)
        plt.hlines(numpy.rad2deg(t2), tinitial, tfinal)
        plt.title("Robot Arm angle and velocitues (qR and qR_d) over Time")
        plt.xlabel("Time (s)")
        plt.ylabel("Angles,Velocities (deg, deg/s)")

        plt.figure()
        q_states = numpy.c_[(states[:, 2], states[:, 3], states[:,
                                                                4], states[:,
                                                                           5])]
        plt.plot(t, numpy.rad2deg(q_states))
        plt.title("Joint Angule over Time")
        plt.xlabel("Time (s)")
        plt.ylabel("Joint Angles (deg)")
        plt.legend(["Arm", "Joint 1", "Joint 2", "Joint 3"])

        plt.figure()
        qd_states = numpy.c_[(states[:, 8], states[:,
                                                   9], states[:,
                                                              10], states[:,
                                                                          11])]
        plt.plot(t, numpy.rad2deg(qd_states))
        plt.legend(["qR_d", "qA_d", "qB_d", "qC_d"])
        plt.title("Joint Angular Velocities over Time")
        plt.xlabel("Time (s)")
        plt.ylabel("Joint Angular Velocities (deg/s)")
        plt.legend(["Arm", "Joint 1", "Joint 2", "Joint 3"])

        plt.figure()
        plt.plot(t, states[:, 0], '--')
        plt.plot(t, states[:, 6])
        plt.title("Robot Distance and Velocity over time")
        plt.xlabel("Time (s)")
        plt.ylabel("Distance (mm)")
        plt.legend(["Distance", "Velocity of the robot"])

        points_output.animate(fps=1 / tstep,
                              movie_name=name1,
                              lw=2,
                              marker='o',
                              color=(1, 0, 0, 1),
                              linestyle='-')
    else:
        pass
    return final, states, y1